ATP-binding domain of NTPase/helicase as a target for hepatitis C antiviral therapy.
نویسندگان
چکیده
To enhance the inhibitory potential of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin) vs hepatitis C virus (HCV) NTPase/helicase, ribavirin-5'-triphosphate (ribavirin-TP) was synthesized and investigated. Ribavirin-TP was prepared with the use of modified Yoshikawa-Ludwig-Mishra-Broom procedure (cf. Mishra & Broom, 1991, J. Chem. Soc., Chem. Commun, 1276-1277) involving phosphorylation of unprotected nucleoside. Kinetic analysis revealed enhanced inhibitory potential of ribavirin-TP (IC50=40 microM) as compared to ribavirin (IC50 > 500 microM). Analysis of the inhibition type by means of graphical methods showed a competitive type of inhibition with respect to ATP. In view of the relatively low specificity towards nucleoside-5'-triphosphates (NTP) of the viral NTPase/helicases, it could not be ruled out that the investigated enzyme hydrolyzed the ribavirin-TP to less potent products. Investigations on non- hydrolysable analogs of ribavirin-TP or ribavirin-5'-diphosphate (ribavirin-DP) are currently under way.
منابع مشابه
Significance of Monoclonal Antibodies against the Conserved Epitopes within Non-Structural Protein 3 Helicase of Hepatitis C Virus
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV), codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs) to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclo...
متن کاملHepatitis C Viral NS3-4A Protease Activity Is Enhanced by the NS3 Helicase*S⃞
Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding a...
متن کاملEbselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the an...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کاملPrimuline derivatives that mimic RNA to stimulate hepatitis C virus NS3 helicase-catalyzed ATP hydrolysis.
ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 heli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2000