CGEF-1 and CHIN-1 Regulate CDC-42 Activity during Asymmetric Division in the Caenorhabditis elegans Embryo
نویسندگان
چکیده
The anterior-posterior axis of the Caenorhabditis elegans embryo is elaborated at the one-cell stage by the polarization of the partitioning (PAR) proteins at the cell cortex. Polarization is established under the control of the Rho GTPase RHO-1 and is maintained by the Rho GTPase CDC-42. To understand more clearly the role of the Rho family GTPases in polarization and division of the early embryo, we constructed a fluorescent biosensor to determine the localization of CDC-42 activity in the living embryo. A genetic screen using this biosensor identified one positive (putative guanine nucleotide exchange factor [GEF]) and one negative (putative GTPase activating protein [GAP]) regulator of CDC-42 activity: CGEF-1 and CHIN-1. CGEF-1 was required for robust activation, whereas CHIN-1 restricted the spatial extent of CDC-42 activity. Genetic studies placed CHIN-1 in a novel regulatory loop, parallel to loop described previously, that maintains cortical PAR polarity. We found that polarized distributions of the nonmuscle myosin NMY-2 at the cell cortex are independently produced by the actions of RHO-1, and its effector kinase LET-502, during establishment phase and CDC-42, and its effector kinase MRCK-1, during maintenance phase. CHIN-1 restricted NMY-2 recruitment to the anterior during maintenance phase, consistent with its role in polarizing CDC-42 activity during this phase.
منابع مشابه
Mechanisms of CDC-42 activation during contact-induced cell polarization.
Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase C...
متن کاملActo-myosin reorganization and PAR polarity in C. elegans.
The symmetry-breaking event during polarization of C. elegans embryos is an asymmetric rearrangement of the acto-myosin network, which dictates cell polarity through the differential recruitment of PAR proteins. The sperm-supplied centrosomes are required to initiate this cortical reorganization. Several questions about this event remain unanswered: how is the acto-myosin network regulated duri...
متن کاملThe Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos.
Caenorhabditis elegans embryos establish cortical domains of PAR proteins of reproducible size before asymmetric cell division. The ways in which the size of these domains is set remain unknown. Here we identify the GTPase-activating proteins (GAPs) RGA-3 and RGA-4, which regulate the activity of the small GTPase RHO-1. rga-3/4(RNAi) embryos have a hypercontractile cortex, and the initial relat...
متن کاملHeterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans
Proper orientation and positioning of the mitotic spindle is essential for the correct segregation of fate determinants during asymmetric cell division. Although heterotrimeric G proteins and their regulators are essential for spindle positioning in many cell types, their mechanism of action remains unclear. In this study, we show that dyrb-1, which encodes a dynein light chain, provides a func...
متن کاملCDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically mad...
متن کامل