Ephrin-B2 Controls Cell Motility and Adhesion during Blood-Vessel-Wall Assembly

نویسندگان

  • Shane S. Foo
  • Christopher J. Turner
  • Susanne Adams
  • Amelia Compagni
  • Deborah Aubyn
  • Naoko Kogata
  • Per Lindblom
  • Moshe Shani
  • Daniel Zicha
  • Ralf H. Adams
چکیده

New blood vessels are initially formed through the assembly or sprouting of endothelial cells, but the recruitment of supporting pericytes and vascular smooth muscle cells (mural cells) ensures the formation of a mature and stable vascular network. Defective mural-cell coverage is associated with the poorly organized and leaky vasculature seen in tumors or other human diseases. Here we report that mural cells require ephrin-B2, a ligand for Eph receptor tyrosine kinases, for normal association with small-diameter blood vessels (microvessels). Tissue-specific mutant mice display perinatal lethality; vascular defects in skin, lung, gastrointestinal tract, and kidney glomeruli; and abnormal migration of smooth muscle cells to lymphatic capillaries. Cultured ephrin-B2-deficient smooth muscle cells are defective in spreading, focal-adhesion formation, and polarized migration and show increased motility. Our results indicate that the role of ephrin-B2 and EphB receptors in these processes involves Crk-p130(CAS) signaling and suggest that ephrin-B2 has some cell-cell-contact-independent functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding.

The transmembrane protein ephrin-B2 regulates angiogenesis, i.e. the formation of new blood vessels through endothelial sprouting, proliferation and remodeling processes. In addition to essential roles in the embryonic vasculature, ephrin-B2 expression is upregulated in the adult at sites of neovascularization, such as tumors and wounds. Ephrins are known to bind Eph receptor family tyrosine ki...

متن کامل

Arterial Shear Stress Reduces Eph-B4 Expression in Adult Human Veins

Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar she...

متن کامل

Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes.

The vascular endothelium is a crucial interface that controls the recruitment of circulating leukocytes. Based on the luminal expression of the ephrin-B2 ligand by endothelial cells (ECs) and the expression of EphB receptors (EphBRs) by circulating monocytes, we hypothesized that EphBR-ephrinB interactions are involved in monocyte adhesion. Adhesion experiments with monocytic cells were perform...

متن کامل

Autocrine fibronectin directs matrix assembly and crosstalk between cell-matrix and cell-cell adhesion in vascular endothelial cells.

Cellular fibronectin (cFN) variants harboring extra FN type 3 repeats, namely extra domains B and A, are major constituents of the extracellular matrix around newly forming blood vessels during development and angiogenesis. Their expression is induced by angiogenic stimuli and their assembly into fibrillar arrays is driven by cell-generated tension at α5β1 integrin-based adhesions. Here, we exa...

متن کامل

The FAKs about blood vessel assembly.

The formation of blood vessels during embryonic development is a complex process that requires the coordination of multiple soluble signals, as well as coordinated communication of cells with one another and with their surrounding extracellular matrix (ECM). The process of vessel assembly can be dissected into discernible steps that appear to require unique controls (depicted in the Figure, pan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2006