Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.
نویسندگان
چکیده
Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg(2+). To better characterize the MPT in kidney proximal tubule cells and assess its contribution to injury to them, we have refined and validated approaches to follow the process in whole kidney proximal tubules and studied its regulation in normoxic tubules and after hypoxia-reoxygenation (H/R). Physiological levels of ADP and Mg(2+) greatly decreased sensitivity to the MPT. Inhibition of cyclophilin D by cyclosporine A (CsA) effectively opposed the MPT only in the presence of ADP and/or Mg(2+). Nonesterified fatty acids (NEFA) had a large role in the decreased resistance to the MPT seen after H/R irrespective of the available substrate or the presence of ADP, Mg(2+), or CsA, but removal of NEFA was less effective at restoring normal resistance to the MPT in the presence of electron transport complex I-dependent substrates than with succinate. The data indicate that the NEFA accumulation that occurs during both hypoxia in vitro and ischemic acute kidney injury in vivo is a critical sensitizing factor for the MPT that overcomes the antagonistic effect of endogenous metabolites and cyclophilin D inhibition, particularly in the presence of complex I-dependent substrates, which predominate in vivo.
منابع مشابه
Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with alpha-ketoglutarate (alpha-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c...
متن کاملCyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury.
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperf...
متن کاملMitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates.
Kidney proximal tubule cells developed severe energy deficits during hypoxia/reoxygenation not attributable to cellular disruption, lack of purine precursors, the mitochondrial permeability transition, or loss of cytochrome c. Reoxygenated cells showed decreased respiration with complex I substrates, but minimal or no impairment with electron donors at complexes II and IV. This was accompanied ...
متن کاملPreservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.
Inhibition of complex I has been considered to be an important contributor to mitochondrial dysfunction in tissues subjected to ischemia-reperfusion. We have investigated the role of complex I in a severe energetic deficit that develops in kidney proximal tubules subjected to hypoxia-reoxygenation and is strongly ameliorated by supplementation with specific citric acid cycle metabolites, includ...
متن کاملSubstrate Modulation of Fatty Acid Effects on Energization and Respiration of Kidney Proximal Tubules during Hypoxia/Reoxygenation
Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 297 6 شماره
صفحات -
تاریخ انتشار 2009