Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study.

نویسندگان

  • Kyoung Joon Oh
  • Scott Barbuto
  • Natalie Meyer
  • Ryung-Suk Kim
  • R John Collier
  • Stanley J Korsmeyer
چکیده

The BCL-2 family proteins constitute a critical control point in apoptosis. BCL-2 family proteins display structural homology to channel-forming bacterial toxins, such as colicins, transmembrane domain of diphtheria toxin, and the N-terminal domain of delta-endotoxin. By analogy, it has been hypothesized the BCL-2 family proteins would unfold and insert into the lipid bilayer upon membrane association. We applied the site-directed spin labeling method of electron paramagnetic resonance spectroscopy to the pro-apoptotic member BID. Here we show that helices 6-8 maintain an alpha-helical conformation in membranes with a lipid composition resembling mitochondrial outer membrane contact sites. However, unlike colicins and the transmembrane domain of diphtheria toxin, these helices of BID are bound to the lipid bilayer without adopting a transmembrane orientation. Our study presents a more detailed model for the reorganization of the structure of tBID on membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocontrolled Exposure of Pro‐apoptotic Peptide Sequences in LOV Proteins Modulates Bcl‐2 Family Interactions

LOV domains act as biomolecular sensors for light, oxygen or the environment's redox potential. Conformational changes upon the formation of a covalent cysteinyl flavin adduct are propagated through hydrogen-bonding networks in the core of designed hybrid phototropin LOV2 domains that incorporate the Bcl homology region 3 (BH3) of the key pro-apoptotic protein BH3-interacting-domain death agoni...

متن کامل

Self-regulation of BAX-induced cell death

Apoptosis, a form of programmed cell death, is a process in multicellular organisms responsible for normal tissue development and homeostasis. The intrinsic pathway of apoptosis is principally regulated by protein-protein interactions within the BCL-2 family of proteins, which can prevent or promote mitochondrial dysfunction. There are over twenty BCL-2 family proteins grouped together based on...

متن کامل

Bcl-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique C-terminal extension.

The Bcl-2 family of proteins plays a central regulatory role in apoptosis. We have identified a novel, widely expressed Bcl-2 member which we have named Bcl-rambo. Bcl-rambo shows overall structural homology to the anti-apoptotic Bcl-2 members containing conserved Bcl-2 homology (BH) motifs 1, 2, 3, and 4. Unlike Bcl-2, however, the C-terminal membrane anchor region is preceded by a unique 250 ...

متن کامل

Pulling the BAX trigger for tumor cell death

Cancer cells evade cellular death pathways, such as apoptosis, in order to ensure an uncontrollable growth as well as resistance to various treatments. Dysregulation of the BCL-2 family of proteins that critically regulate the intrinsic apoptotic pathway contributes to the pathogenesis of cancer [1]. A major mechanism of cancer progression relies on the overexpression of anti-apoptotic BCL-2 pr...

متن کامل

Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins.

Normal cellular lifespan is contingent upon preserving outer mitochondrial membrane (OMM) integrity, as permeabilization promotes apoptosis. BCL-2 family proteins control mitochondrial outer membrane permeabilization (MOMP) by regulating the activation of the pro-apoptotic BCL-2 effector molecules, BAX and BAK. Sustainable cellular stress induces proteins (e.g., BID, BIM, and cytosolic p53) cap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 1  شماره 

صفحات  -

تاریخ انتشار 2005