Mobile Genetic Element-Encoded Cytolysin Connects Virulence to Methicillin Resistance in MRSA
نویسندگان
چکیده
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.
منابع مشابه
Transcription and Translation Products of the Cytolysin Gene psm-mec on the Mobile Genetic Element SCCmec Regulate Staphylococcus aureus Virulence
The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sens...
متن کاملMolecular Evolutionary Pathways toward Two Successful Community-Associated but Multidrug-Resistant ST59 Methicillin-Resistant Staphylococcus aureus Lineages in Taiwan: Dynamic Modes of Mobile Genetic Element Salvages
Clonal complex 59 (CC59) Staphylococcus aureus in Taiwan includes both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). As the most prominent community-associated MRSA (CA-MRSA) in Taiwan, CC59 has two major clones characterized as PVL-negative SCCmec IV (carrying the staphylococcal cassette chromosome mec IV but Panton-Valentine leukocidin-negative) and PVL-...
متن کاملMobile Genetic Element SCCmec-encoded psm-mec RNA Suppresses Translation of agrA and Attenuates MRSA Virulence
Community acquired-methicillin resistant Staphylococcus aureus (CA-MRSA) is a socially problematic pathogen that infects healthy individuals, causing severe disease. CA-MRSA is more virulent than hospital associated-MRSA (HA-MRSA). The underlying mechanism for the high virulence of CA-MRSA is not known. The transcription product of the psm-mec gene, located in the mobile genetic element SCCmec ...
متن کاملDistribution and Regulation of the Mobile Genetic Element-Encoded Phenol-Soluble Modulin PSM-mec in Methicillin-Resistant Staphylococcus aureus
The phenol-soluble modulin PSM-mec is the only known staphylococcal toxin that is encoded on a mobile antibiotic resistance determinant, namely the staphylococcal cassette chromosome (SCC) element mec encoding resistance to methicillin. Here we show that the psm-mec gene is found frequently among methicillin-resistant Staphylococcus aureus (MRSA) strains of SCCmec types II, III, and VIII, and i...
متن کاملDistribution Patterns of Methicillin Resistance Genes (mecA) in Staphylococcus aureus Isolated from Clinical Specimens
There is a growing concern about the application of molecular methods in epidemiological studies of infectious diseases. The objective of this study was to determine the genetic stability of methicillin resistance genes in Staphylococcus aureus for the evaluation of resistance strain distribution. One hundred and fifteen S. aureus isolates from patients with staphylococcal infection were collec...
متن کامل