Drinfeld Modules with No Supersingular Primes
نویسنده
چکیده
We give examples of Drinfeld modules φ of rank 2 and higher over Fq(T ) that have no primes of supersingular reduction. The idea is to construct φ so that the associated mod ` representations are incompatible with the existence of supersingular primes. We also answer a question of Elkies by proving that such obstructions cannot exist for elliptic curves over number fields. Elkies [El1] proved that if E is an elliptic curve over Q, then there are infinitely many primes p for which the mod p reduction of E is supersingular. Later [El3] he extended his argument to prove the analogous statement for elliptic curves over number fields having a real place. But over other number fields the question is still open. In this note, we show that the analogous statement for Drinfeld modules over Fq(T ) is false: we exhibit Drinfeld modules having no primes of supersingular reduction. The obstruction is obtained from the mod ` representations associated to a Drinfeld module. The final section, which may be read independently of the rest of the paper, proves that such obstructions cannot exist for elliptic curves over number fields.
منابع مشابه
Factoring Polynomials over Finite Fields using Drinfeld Modules with Complex Multiplication
We present novel algorithms to factor polynomials over a finite field Fq of odd characteristic using rank 2 Drinfeld modules with complex multiplication. The main idea is to compute a lift of the Hasse invariant (modulo the polynomial f(x) ∈ Fq[x] to be factored) with respect to a Drinfeld module φ with complex multiplication. Factors of f(x) supported on prime ideals with supersingular reducti...
متن کاملDrinfeld Modules with Complex Multiplication, Hasse Invariants and Factoring Polynomials over Finite Fields
We present a novel randomized algorithm to factor polynomials over a finite field Fq of odd characteristic using rank 2 Drinfeld modules with complex multiplication. The main idea is to compute a lift of the Hasse invariant (modulo the polynomial f ∈ Fq[x] to be factored) with respect to a random Drinfeld module φ with complex multiplication. Factors of f supported on prime ideals with supersin...
متن کاملEquidistribution and Integral Points for Drinfeld Modules
We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel’s integral points theorem over number fields and to an analog of a theorem of Schinzel’s regarding the order of a point modulo certain primes.
متن کاملTOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES
Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...
متن کاملSUPERSINGULAR PRIMES FOR POINTS ON X0(p)/wp
For small odd primes p, we prove that most of the rational points on the modular curve X0(p)/wp parametrize pairs of elliptic curves having infinitely many supersingular primes. This result extends the class of elliptic curves for which the infinitude of supersingular primes is known. We give concrete examples illustrating how these techniques can be explicitly used to construct supersingular p...
متن کامل