On the Freeness of Anticyclotomic Selmer Groups
نویسندگان
چکیده
We establish the freeness of certain anticyclotomic Selmer groups of modular forms. The freeness of these Selmer groups plays a key role in the Euler system arguments introduced in [BD05]. In particular, our result fills some implicit gaps in [PW11] and [CH15] which in turn allows the results of these papers to hold for modular forms whose residual representations are not minimally ramified. Removing these minimal ramification conditions is essential for applications of congruences of modular forms to anticyclotomic Iwasawa theory as in [PW11, §7] and [Kim].
منابع مشابه
Anticyclotomic Iwasawa Theory of Cm Elliptic Curves Ii
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zpextension D∞ of the CM field K, where p is a prime of good, supersingular reduction for E. Our main result yields an asymptotic formula for the corank of the p-primary Selmer group of E along the extension D∞/K.
متن کاملAnticyclotomic Iwasawa Theory of Cm Elliptic Curves Ii Adebisi Agboola and Benjamin Howard
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zpextension D∞ of the CM field K, where p is a prime of good, supersingular reduction for E. Our main result yields an asymptotic formula for the corank of the p-primary Selmer group of E along the extension D∞/K.
متن کاملAnticyclotomic Iwasawa Theory of Cm Elliptic Curves
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasawa ...
متن کاملPlus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes
Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...
متن کاملAnticyclotomic Iwasawa Theory of Cm Elliptic Curves Adebisi Agboola and Benjamin Howard with an Appendix by Karl Rubin
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Zp-extension of the CM field, where p is a prime of good, ordinary reduction for E. When the complex L-function of E vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p-power Selmer group over the anticyclotomic extension is a torsion Iwasa...
متن کامل