Augmented Sliding Mode Control for Flexible Link Manipulators
نویسندگان
چکیده
A method of sliding mode control (SMC) is proposed for the control of flexible, nonlinear, and structural systems. The method departs from standard sliding mode control by dispensing with generalized accelerations during the control law design. Global, asymptotic stability of rigid body motion is maintained if knowledge on the bounds of the neglected terms exists. Furthermore, this method provides damping for the measured flexible body modes. This paper investigates an augmented SMC technique for slewing flexible manipulators. A conventional sliding surface uses a first order system including a combination of error and error rate terms. The augmented sliding surface includes an enhanced term that helps to reject flexible degrees-of-freedom. The algorithms are theoretically developed and experimentally tested on a slewing single flexible link robot. The test apparatus is instrumented with a strain gauge at the root and an accelerometer attached at the tip. A DC motor and encoder are used to servo the link from an initial position to a final position. A standard cubic polynomial is employed to generate the reference trajectories. The augmented SMC algorithm showed improved performance by reducing the flexible link tip oscillations.
منابع مشابه
Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملPlanning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کاملEliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic
In industrial robotic manipulator, due to the presence of quite nonlinear dynamic and structural and nonstructural uncertainties, a precise model is not easily obtained. As a result, designing a controller with a suitable function based on system model is a challenging issue. Sliding mode control is a robust control with numerous applications which can overcome the aforementioned uncertainties....
متن کاملExperimental Control of Flexible Robot Manipulators
Flexible-link robotic manipulators are mechanical devices whose control can be rather challenging, among other reasons because of their intrinsic under-actuated nature. This chapter presents various experimental studies of diverse robust control schemes for this kind of robotic arms. The proposed designs are based on several control strategies with well defined theoretical foundations whose eff...
متن کاملIntegral Nested Sliding Mode Control for Robotic Manipulators
An Integral Nested Sliding Mode Control (INSMC) is proposed for n-link robotic manipulators tracking problem by employing Integral Sliding Mode (ISM) and Nested Sliding Mode (NSM) concepts. This controller has the robustness of NSM against matched and no matched perturbations, and the capability of ISM to reduce the sliding functions gains. Application to a two-link planar robot manipulator is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 34 شماره
صفحات -
تاریخ انتشار 2002