Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells.
نویسندگان
چکیده
Epigenetic regulation of hematopoietic stem cells (HSCs) ensures lifelong production of blood and bone marrow. Recently, we reported that loss of de novo DNA methyltransferase Dnmt3a results in HSC expansion and impaired differentiation. Here, we report conditional inactivation of Dnmt3b in HSCs either alone or combined with Dnmt3a deletion. Combined loss of Dnmt3a and Dnmt3b was synergistic, resulting in enhanced HSC self-renewal and a more severe block in differentiation than in Dnmt3a-null cells, whereas loss of Dnmt3b resulted in a mild phenotype. Although the predominant Dnmt3b isoform in adult HSCs is catalytically inactive, its residual activity in Dnmt3a-null HSCs can drive some differentiation and generates paradoxical hypermethylation of CpG islands. Dnmt3a/Dnmt3b-null HSCs displayed activated β-catenin signaling, partly accounting for the differentiation block. These data demonstrate distinct roles for Dnmt3b in HSC differentiation and provide insights into complementary de novo methylation patterns governing regulation of HSC fate decisions.
منابع مشابه
Distinct functions of Dnmt3a and Dnmt3b de novo DNA methyltransferases in ES cell proliferation and differentiation
Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, have been identified in humans and mice to contribute to the methylation of unmodified DNA. We recently showed a transition of de novo DNA methyltransferase expression from Dnmt3b to Dnmt3a during mouse embryogenesis and in tissue-specific stem cells, suggesting distinct functions of Dnmt3a and Dnmt3b during these processes. In this study, ...
متن کاملDe novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells
DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD...
متن کاملEstablishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b.
We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or "maintenance," of DNA methylation patterns. Inactivation of both Dnmt3a...
متن کاملNp95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi-methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using ...
متن کاملStage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis
DNA methylation is essential for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, contribute to the creation of DNA methylation patterns in embryos. We demonstrated that the Dnmt3a and Dnmt3b proteins are expressed at different stages of embryogenesis. Dnmt3b is specifically expressed in totipotent embryonic cells, such as inner cell mass, epiblast and embryonic ectoderm cells, whils...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell stem cell
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2014