Injection of innocuous oils to create reactive barriers for bioremediation: laboratory studies.
نویسنده
چکیده
In situ groundwater remediation may be achieved using stationary permeable barriers created by the injection of a substrate, such as innocuous vegetable oil, into the contaminated aquifer. The oil provides the electron donor stimulating microorganisms to degrade or sequester many contaminants. At present, little is known about the best procedures to use when injecting oil into an aquifer. In this investigation, laboratory column and sand tank studies were used as model systems to explore the effect of different injection parameters on the distribution of oil emulsions into water-saturated sand. The parameters investigated included injection pressures of 70, 1400 and 18,000 KPa; injection times of 15, 30, 60 or 120 s; and the influence of an emulsifier, polyoxyethylenesorbitan monooleate (Tween 80), upon the distribution of the injected oil. The longest injection patterns were achieved at 18,000 KPa. A pattern that was 46+/-1.8 cm long was produced with an 18,000 KPa injection for 60 s. Increasing the injection time to 120 s increased the length of the pattern by only 6.5%. Tween 80 at concentrations of 0.05% increased the width of the injection patterns but did not increase the length of the pattern. A multi-ported injection probe might be used to create in situ permeable barriers approximately 1 m wide.
منابع مشابه
FINAL REPORT Development of Permeable Reactive Barriers (PRB) Using Edible Oils SERDP Project ER-1205
DNAPL Dense Non-aqueous Phase Liquid DO dissolved oxygen DOC dissolved organic carbon DoD Department of Defense DWEL Drinking Water Equivalent Level EOS ® Thermal Conductive Detector TCE Trichloroethene (Trichloroethylene) TOC Total Organic Carbon VC vinyl chloride VOC Volatile Organic Compound VS Volatile Solids ix ACKNOWLEDGEMENTS The research described in this report was conducted by a team ...
متن کاملCL:AIRE SABRE bulletins describe specific, practical aspects of research from the LINK Bioremediation Project SABRE, which aimed to develop and demonstrate the effectiveness of in situ enhanced anaerobic bioremediation for the treatment of chlorinated solvent DNAPL
The chlorinated solvents tetrachloroethene (PCE) and trichloroethene (TCE) have been used extensively in industry and are now amongst the most common and hazardous groundwater contaminants (National Research Council, 2004). These solvents are typically present as dense, non-aqueous phase liquids (DNAPLs) and represent long-term source zones that produce persistent contamination plumes in aquife...
متن کاملMineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado.
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeoc...
متن کاملAssessment of Bioaugmentation and Biostimulation Efficiencies for Petroleum Contaminated Sediments
The effectiveness of hydrocarbon bioremediation strategies approaches is depending on various issues such as type and volume of pollution, nutrient accessibility in the target ecosystem, time, biodiversity of microorganisms, pollutant bioavailability and many others. In the present research, laboratory studies were carried out on the bioremediation of coastal sediment samples ...
متن کاملAssessment of Converter Sludge from Esfahan Steel Company as a Persulfate Nano-Activator for Permeable Reactive Barriers (Prbs) in Landfill Leachate Treatment
The present research studies the performance of Converter Sludge (CL)as a nano-activator of persulfate (PS) in Permeable Reactive Barrier (PRB) as an in-situ technology for leachate treatment.In batch experiments, the acidic conditions (pH = 3) have been the most suitable for removal operations, where COD and NH3 removal efficiencies are 69.15% and 60.96%, respectively. The Box–Behnken design (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of contaminant hydrology
دوره 80 1-2 شماره
صفحات -
تاریخ انتشار 2005