Atomistic molecular dynamics simulations of shock compressed quartz.

نویسندگان

  • M R Farrow
  • M I J Probert
چکیده

Atomistic non-equilibrium molecular dynamics simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer, and van Santen [Phys. Rev. B 43, 5068 (1991)] to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geometry optimised system of a polar slab in a three-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under representative pressure conditions of the Earth core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential incorrectly prefers the β-quartz phase over the α-quartz phase at zero-temperature, and that there is a β → α phase-transition at 6 GPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

For large-scale atomistic simulations involving chemical reactions to study nanostructured energeticmaterials, we have designed linear-scaling molecular dynamics algorithms: 1) first-principles-based fast reactive force field molecular dynamics, and 2) embedded divide-and-conquer density functional theory on adaptive multigrids for quantum-mechanical molecular dynamics. These algorithms have ac...

متن کامل

AtomSim: web-deployed atomistic dynamics simulator

AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also avai...

متن کامل

Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations

The response of the energetic molecular crystal cyclotrimethylene trinitramine (RDX) to the propagation of planar shock waves nonnal to ( 100) has been studied using large-scale molecular dynamics simulations that employ an accurate and transferable nonreactive potential. The propagation of the shock waves was simulated using nonequilibrium molecular dynamics. Shear bands were nucleated during ...

متن کامل

Multiple Reaction Pathways in Shocked 2,4,6-Triamino-1,3,5-trinitrobenzene Crystal

Detonation processes probed with atomistic details have remained elusive due to highly complex reactions in heterogeneous shock structures. Here, we provide atomistic details of the initial reaction pathways during shock-induced decomposition of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) crystal using large reactive molecular dynamics simulations based on reactive force fields. Simulation resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 4  شماره 

صفحات  -

تاریخ انتشار 2011