Resource-allocating probabilistic neuro-fuzzy network

نویسندگان

  • Yevgeniy V. Bodyanskiy
  • Yevgen Gorshkov
  • Vitaliy Kolodyazhniy
چکیده

In this paper, an architecture of a resourceallocating learning probabilistic neural network is considered. Construction and learning algorithms are proposed. The advantages of this network lie in the possibility of classification of data with substantially overlapping clusters. The construction algorithm significantly reduces the size of the network and tuning of the activation function parameters improves the accuracy of classification. Simulation results confirm the efficiency of the proposed approach in the data classification problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

Students Classification With Adaptive Neuro Fuzzy

Identifying exceptional students for scholarships is an essential part of the admissions process in undergraduate and postgraduate institutions, and identifying weak students who are likely to fail is also important for allocating limited tutoring resources. In this article, we have tried to design an intelligent system which can separate and classify student according to learning factor and pe...

متن کامل

An Adaptive Resource Allocating Neuro-Fuzzy Inference System with Sensitivity Analysis Resource Control

Adaptability in non-stationary contexts is a very important property and a constant desire for modern intelligent systems and is usually associated with dynamic system behaviors. In this framework, we present a novel methodology of dynamic resource control and optimization for neurofuzzy inference systems. Our approach involves a neurofuzzy model with structural learning capabilities that adds ...

متن کامل

Wind power prediction interval estimation method using wavelet-transform neuro-fuzzy network

Wind power point forecasting is the primary method to deal with its uncertainty. However, in many applications, the probabilistic interval of wind power is more useful than traditional point forecasting. Methods to determine the probabilistic interval of wind power point forecasting value is very essential to power system operations. Based on the bootstrap method, this paper proposed a wavelet ...

متن کامل

Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003