Size Oblivious Programming with InfiniMem

نویسندگان

  • Sai Charan Koduru
  • Rajiv Gupta
  • Iulian Neamtiu
چکیده

Many recently proposed BigData processing frameworks make programming easier, but typically expect the datasets to fit in the memory of either a single multicore machine or a cluster of multicore machines. When this assumption does not hold, these frameworks fail. We introduce the InfiniMem framework that enables size oblivious processing of large collections of objects that do not fit in memory by making them disk-resident. InfiniMem is easy to program with: the user just indicates the large collections of objects that are to be made disk-resident, while InfiniMem transparently handles their I/O management. The InfiniMem library can manage a very large number of objects in a uniform manner, even though the objects have different characteristics and relationships which, when processed, give rise to a wide range of access patterns requiring different organizations of data on the disk. We demonstrate the ease of programming and versatility of InfiniMem with 3 different probabilistic analytics algorithms, 3 different graph processing size oblivious frameworks; they require minimal effort, 6–9 additional lines of code. We show that InfiniMem can successfully generate a mesh with 7.5 million nodes and 300 million edges (4.5 GB on disk) in 40 minutes and it performs the PageRank computation on a 14GB graph with 134 million vertices and 805 million edges at 14 minutes per iteration on an 8-core machine with 8 GB RAM. Many graph generators and processing frameworks cannot handle such large graphs. We also exploit InfiniMem on a cluster to scale-up an object-based DSM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size Oblivious Programming of Clusters for Irregular Parallelism

OF THE DISSERTATION Size Oblivious Programming of Clusters for Irregular Parallelism

متن کامل

Brief Announcement : The Cache - Oblivious Gaussian Elimination Paradigm — Theoretical Framework and Experimental Evaluation ∗

Cache-efficient algorithms improve execution time by exploiting data parallelism inherent in the transfer of blocks of useful data between adjacent memory levels. By increasing locality in their memory access patterns, these algorithms try to keep the number of block transfers small. The cache-oblivious model [1] is a further refinement that enables the development of system-independent cache-e...

متن کامل

Cache Efficient Simple Dynamic Programming

New cache-oblivious and cache-aware algorithms for simple dynamic programming based on Valiant’s context-free language recognition algorithm are designed, implemented, analyzed, and empirically evaluated with timing studies and cache simulations. The studies show that for large inputs the cache-oblivious and cache-aware dynamic programming algorithms are significantly faster than the standard d...

متن کامل

Oblivious Medians via Online Bidding

Following Mettu and Plaxton [22, 21], we study oblivious algorithms for the k-medians problem. Such an algorithm produces an incremental sequence of facility sets. We give improved algorithms, including a (24 + )-competitive deterministic polynomial algorithm and a 2e ≈ 5.44-competitive randomized non-polynomial algorithm. Our approach is similar to that of [18], which was done independently. W...

متن کامل

Resizable Tree-Based Oblivious RAM

Although newly proposed, tree-based Oblivious RAM schemes are drastically more efficient than older techniques, they come with a significant drawback: an inherent dependence on a fixed-size database. Yet, a flexible storage is vital for real-world use of Oblivious RAM since one of its most promising deployment scenarios is for cloud storage, where scalability and elasticity are crucial. We revi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015