Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling

نویسندگان

  • M. KALAEE
  • T. K. PARAÏSO
  • H. PFEIFER
چکیده

We present the optical and mechanical design of a mechanically compliant quasitwo-dimensional photonic crystal cavity formed from thin-film silicon in which a pair of linear nanoscale slots are used to create two coupled high-Q optical resonances. The optical cavity supermodes, whose frequencies are designed to lie in the 1500 nm wavelength band, are shown to interact strongly with mechanical resonances of the structure whose frequencies range from a few MHz to a few GHz. Depending upon the symmetry of the mechanical modes and the symmetry of the slot sizes, we show that the optomechanical coupling between the optical supermodes can be either linear or quadratic in the mechanical displacement amplitude. Tuning of the nanoscale slot size is also shown to adjust the magnitude and sign of the cavity supermode splitting 2J, enabling near-resonant motional scattering between the two optical supermodes and greatly enhancing the x2-coupling strength. Specifically, for the fundamental flexural mode of the central nanobeam of the structure at 10 MHz the per-phonon linear cross-mode coupling rate is calculated to be g̃+−/2π = 1 MHz, corresponding to a per-phonon x2-coupling rate of g̃′/2π = 1 kHz for a mode splitting 2J/2π = 1 GHz which is greater than the radiation-limited supermode linewidths. © 2016 Optical Society of America OCIS codes: (130.0130) Integrated optics; (230.5298) Photonic crystals; (230.4555) Coupled resonators; (230.4685) Optical microelectromechanical devices. References and links 1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014). 2. A. Jayich, J. Sankey, B. Zwickl, C. Yang, J. Thompson, S. Girvin, A. Clerk, F. Marquardt, and J. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New Journal of Physics 10, 095008 (2008). 3. J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). 4. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett. 109, 063601 (2012). 5. H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009). 6. V. Braginsky, S. Strigin, and S. P. Vyatchanin, “Parametric oscillatory instability in fabry–perot interferometer,” Phys. Lett. A 287, 331–338 (2001). 7. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled ligo interferometer,” Phys. Lett. A 305, 111–124 (2002). 8. V. Braginsky and S. Vyatchanin, “Low quantum noise tranquilizer for fabry–perot interferometer,” Phys. Lett. A 293, 228–234 (2002). 9. T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014). 10. L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nat. Commun. 6, 5850 (2015). 11. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett. 107, 043603 (2011). Vol. 24, No. 19 | 19 Sep 2016 | OPTICS EXPRESS 21308 #269835 http://dx.doi.org/10.1364/OE.24.021308 Journal © 2016 Received 4 Jul 2016; revised 26 Aug 2016; accepted 27 Aug 2016; published 6 Sep 2016 12. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012). 13. M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013). 14. M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross, and M. L. Roukes, “Phase synchronization of two anharmonic nanomechanical oscillators,” Phys. Rev. Lett. 112, 014101 (2014). 15. X.-W. Xu and Y.-J. Li, “Antibunching photons in a cavity coupled to an optomechanical system,” J. Phys. B At. Mol. Opt. Phys. 46, 035502 (2013). 16. H. Flayac, D. Gerace, and V. Savona, “An all-silicon single-photon source by unconventional photon blockade,” Sci. Rep. 5, 11223 (2015). 17. M.-A. Lemonde, N. Didier, and A. A. Clerk, “Antibunching and unconventional photon blockade with Gaussian squeezed states,” Phys. Rev. A 90, 063824 (2014). 18. N. Lörch and K. Hammerer, “Sub-Poissonian phonon lasing in three-mode optomechanics,” Phys. Rev. A 91, 061803 (2015). 19. T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, “Analysis of radiation-pressure inducedmechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005). 20. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768–772 (2012). 21. M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New Journal of Physics 14, 125005 (2012). 22. M. Winger, T. D. Blasius, T. P. M. Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011). 23. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012). 24. D. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New Journal of Physics 13, 023003 (2011). 25. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). 26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). 27. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nature Physics 6, 707–712 (2010). 28. D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch, and J. G. E. Harris, “Multimode optomechanical dynamics in a cavity with avoided crossings,” Nat. Commun. 6, 6232 (2015). 29. X. Chen, C. Zhao, S. Danilishin, L. Ju, D. Blair, H. Wang, S. P. Vyatchanin, C. Molinelli, A. Kuhn, S. Gras, T. Briant, P.-F. Cohadon, A. Heidmann, I. Roch-Jeune, R. Flaminio, C. Michel, and L. Pinard, “Observation of three-mode parametric instability,” Phys. Rev. A 91, 033832 (2015). 30. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010). 31. C. Doolin, B. D. Hauer, P. H. Kim, a. J. R. MacDonald, H. Ramp, and J. P. Davis, “Nonlinear optomechanics in the stationary regime,” Phys. Rev. A 89, 1–6 (2014). 32. F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012). 33. M. Evans, S. Gras, P. Fritschel, J. Miller, L. Barsotti, D. Martynov, A. Brooks, D. Coyne, R. Abbott, R. X. Adhikari, K. Arai, R. Bork, B. Kells, J. Rollins, N. Smith-Lefebvre, G. Vajente, H. Yamamoto, C. Adams, S. Aston, J. Betzweiser, V. Frolov, A. Mullavey, A. Pele, J. Romie, M. Thomas, K. Thorne, S. Dwyer, K. Izumi, K. Kawabe, D. Sigg, R. Derosa, A. Effler, K. Kokeyama, S. Ballmer, T. J. Massinger, A. Staley, M. Heinze, C. Mueller, H. Grote, R. Ward, E. King, D. Blair, L. Ju, and C. Zhao, “Observation of Parametric Instability in Advanced LIGO,” Phys. Rev. Lett. 114, 161102 (2015). 34. T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity,” Phys. Rev. X 5, 041024 (2015). 35. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). 36. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram-and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). 37. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity,” Opt. Express 17, 3802 (2009). 38. COMSOL Multiphysics, version 3.5a. 39. K. Srinivasan and O. Painter, “Momentum space design of high-q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002). 40. Y. Yanay, J. C. Sankey, and A. A. Clerk, “Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems,” Phys. Rev. A 93, 063809 (2016). Vol. 24, No. 19 | 19 Sep 2016 | OPTICS EXPRESS 21309

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and simulation of a highly sensitive photonic crystal temperature sensor based on a cavity filled with the distilled water

In this paper design and two dimensional (2D) simulation of a photonic crystal highly sensitive temperature sensor is presented. The 2D simulations are based on finite-difference time-domain (FDTD) method and are done using Rsoft software. The device is constructed using a cavity filled with the distilled water located in the center of the photonic crystal waveguide. The operation of the propos...

متن کامل

Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.

In this paper we study and design quasi-2D optomechanical crystals, waveguides, and resonant cavities formed from patterned slabs. Two-dimensional periodicity allows for in-plane pseudo-bandgaps in frequency where resonant optical and mechanical excitations localized to the slab are forbidden. By tailoring the unit cell geometry, we show that it is possible to have a slab crystal with simultane...

متن کامل

Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities

We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Qo1⁄4 4.2 10 and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. T...

متن کامل

Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities.

We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5×10(6). The mechanical mode is modeled to have fundamental resonance Ωm/2π of 460 MHz and a quality f...

متن کامل

High-Q side-coupled semi-2D-photonic crystal cavity

High-Q semi-2D-photonic crystal cavities with a tapered edge and side-coupled bus waveguide are demonstrated. With a quadratic design, the unloaded cavity presents a theoretical ultrahigh quality factor up to 6.7 × 10(7) for the condition that there are mere 34 holes in the propagated direction, which is pretty close to the 2D and 1D counterpart. Combined with a side-coupled bus waveguide, an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016