$\mathbb{Z}_p\mathbb{Z}_p[u]$-additive codes

نویسندگان

  • Zhenliang Lu
  • Shixin Zhu
چکیده

Abstract: In this paper, we study ZpZp[u]-additive codes, where p is prime and u 2 = 0. In particular, we determine a Gray map from ZpZp[u] to Z α+2β p and study generator and parity check matrices for these codes. We prove that a Gray map Φ is a distance preserving map from (ZpZp[u],Gray distance) to (Z α+2β p ,Hamming distance), it is a weight preserving map as well. Furthermore we study the structure of ZpZp[u]-additive cyclic codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$(1-2u^2)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^2)$-constacyclic codes over the ring $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$, where $u^3=u$. We describe generator polynomials of this kind of codes and investigate the structural properties of these codes by a decomposition theorem.

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

One-Lee weight and two-Lee weight $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes

In this paper, we study one-Lee weight and two-Lee weight codes over Z2Z2[u], where u = 0. Some properties of one-Lee weight Z2Z2[u]-additive codes are given, and a complete classification of one-Lee weight Z2Z2[u]-additive formally self-dual codes is obtained. The structure of two-Lee weight projective Z2Z2[u] codes are determined. Some optimal binary linear codes are obtained directly from on...

متن کامل

On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-$(1+u)$-additive constacyclic

In this paper, we study Z2Z2[u]-(1 + u)-additive constacyclic code of arbitrary length. Firstly, we study the algebraic structure of this family of codes and a set of generator polynomials for this family as a (Z2+uZ2)[x]-submodule of the ring Rα,β. Secondly, we give the minimal generating sets of this family codes, and we determine the relationship of generators between the Z2Z2[u]-(1 + u)-add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015