Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence
نویسندگان
چکیده
Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population.
منابع مشابه
Comparative Genomic Analysis and In Vivo Modeling of Streptococcus pneumoniae ST3081 and ST618 Isolates Reveal Key Genetic and Phenotypic Differences Contributing to Clonal Replacement of Serotype 1 in The Gambia
Streptococcus pneumoniae serotype 1 is one of the leading causes of invasive pneumococcal disease (IPD) in West Africa, with ST618 being the dominant cause of IPD in The Gambia. Recently however, a rare example of clonal replacement was observed, where the ST3081 clone of serotype 1 replaced the predominant ST618 clone as the main cause of IPD. In the current study, we sought to find the reason...
متن کاملThe changing epidemiology of Streptococcus pneumoniae serotype 19A clonal complexes.
Streptococcus pneumoniae is a leading cause of pneumonia throughout the world and a major cause of serious invasive disease, especially in the very young and the elderly. The major virulence factor of S. pneumoniae is its polysaccharide capsule, which can be expressed as 91 different capsular serotypes [1, 2].Seven serotypes (those of high prevalence in children prior to 2000; serotype [sero]4,...
متن کاملVariation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types.
Streptococcus pneumoniae frequently colonizes the upper respiratory tract of young children and is an important cause of otitis media and invasive disease. Carriage is more common than disease, yet the genetic factors that predispose a given clone for disease are not known. The relationship between capsule type, genetic background, and virulence is complex, and important questions remain regard...
متن کاملThe autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes.
The lytA-encoded autolysin (N-acetylmuramoyl-L-alanine amidase) of Streptococcus pneumoniae is believed to play an important role in the pathogenesis of pneumococcal infection and has been identified as a putative vaccine target. Allelic diversity of lytA in an extensive collection of clinical isolates was assessed by restriction fragment length polymorphism and confirmatory sequencing studies....
متن کاملStreptococcus pneumoniae isolates with reduced susceptibility to ciprofloxacin in Spain: clonal diversity and appearance of ciprofloxacin-resistant epidemic clones.
Analysis of the pulsed-field gel electrophoretic profiles of 82 pneumococcal isolates with reduced susceptibility to ciprofloxacin (RSC) and of 90 co-occurring susceptible isolates indicates a considerable genetic diversity among isolates with RCS and points to a close relation between the two groups. This finding suggests that pneumococci with RCS emerge through independent mutational events.
متن کامل