A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

نویسندگان

  • Francis Robert
  • Léa Brakier-Gingras
چکیده

In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation of chloroplast and bacterial ribosomal proteins by cross-reactions of antibodies specific to purified Escherichia coli ribosomal proteins.

Immunological homology between chloroplast ribosomal proteins (r-proteins) from a higher plant (Spinacia) and bacterial r-proteins was examined using antibodies prepared against 35 purified Escherichia coli r-proteins. Cross-reactions were determined on cellulose acetate gels and on nitrocellulose paper, after electrophoretic transfer of r-proteins from one- and two dimensional polyacrylamide g...

متن کامل

Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3’-Terminal Fragment of 16S rRNA in E. coli

For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore...

متن کامل

Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding...

متن کامل

Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.

Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for bindin...

متن کامل

Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli

YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 45  شماره 

صفحات  -

تاریخ انتشار 2003