Emissions and climate-relevant optical properties of pollutants emitted from a three-stone fire and the Berkeley-Darfur stove tested under laboratory conditions.
نویسندگان
چکیده
Cooking in the developing world generates pollutants that endanger the health of billions of people and contribute to climate change. This study quantified pollutants emitted when cooking with a three-stone fire (TSF) and the Berkeley-Darfur Stove (BDS), the latter of which encloses the fire to increase fuel efficiency. The stoves were operated at the Lawrence Berkeley National Laboratory testing facility with a narrow range of fuel feed rates to minimize performance variability. Fast (1 Hz) measurements of pollutants enabled discrimination between the stoves' emission profiles and development of woodsmoke-specific calibrations for the aethalometer (black carbon, BC) and DustTrak (fine particles, PM2.5). The BDS used 65±5% (average±95% confidence interval) of the wood consumed by the TSF and emitted 50±5% of the carbon monoxide emitted by the TSF for an equivalent cooking task, indicating its higher thermal efficiency and a modest improvement in combustion efficiency. The BDS reduced total PM2.5 by 50% but achieved only a 30% reduction in BC emissions. The BDS-emitted particles were, therefore, more sunlight-absorbing: the average single scattering albedo at 532 nm was 0.36 for the BDS and 0.47 for the TSF. Mass emissions of PM2.5 and BC varied more than emissions of CO and wood consumption over all tests, and emissions and wood consumption varied more among TSF than BDS tests. The international community and the Global Alliance for Clean Cookstoves have proposed performance targets for the highest tier of cookstoves that correspond to greater reductions in fuel consumption and PM2.5 emissions of approximately 65% and 95%, respectively, compared to baseline cooking with the TSF. Given the accompanying decrease in BC emissions for stoves that achieve this stretch goal and BC's extremely high global warming potential, the short-term climate change mitigation from avoided BC emissions could exceed that from avoided CO2 emissions.
منابع مشابه
Stove Solutions: Improving Health, Safety, and the Environment in Darfur with Fuel-Efficient Cookstoves | Solutions
In Brief Nearly three billion people across the globe cook every day using open, three-stone fires, or rudimentary stoves that burn biomass such as wood, agricultural waste, animal dung, and charcoal. Cooking with these traditional cookstoves is inefficient and grossly polluting, harming health and the environment, and contributing to global warming. In many places worldwide, women must walk fo...
متن کاملReducing Ultrafine Particle Emissions Using Air Injection in Wood-Burning Cookstoves.
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gas...
متن کاملImpacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.
The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" ...
متن کاملFuel Efficient Stoves for Darfur camps of Internally Displaced Persons Report of Field trip to North and South Darfur, Nov. 16 - Dec.17, 2005
Executive Summary Approximately 2.2 million internally displaced persons (" IDPs ") in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fe...
متن کاملمدلسازی اثر تغییر اقلیم بر انتشار دیاکسیدکربن خاک در مراتع خشک (جنوب ایران)
Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 48 11 شماره
صفحات -
تاریخ انتشار 2014