Nonparametric Beta Kernel Estimator for Long Memory Time Series
نویسندگان
چکیده
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estimator automaticaly adapts to the long-or the short-range dependency of the process. A cross-validation procedure is also studied in order to select the nuisance parameter of the estimator. Illustrations on historical as well as most recent returns and absolute returns of the S&P500 index show the reasonable performance of the estimation, and show that the data-driven estimator is a valuable tool for the detection of long-memory as well as hidden periodicities in stock returns.
منابع مشابه
Mean-Squared Error Analysis of Kernel Regression Estimator for Time Series
Because of a lack of a priori information, the minimum mean-squared error predictor, the conditional expectation, is often not known for a non-Gaussian time series. We show that the nonparametric kernel regression estimator of the conditional expectation is mean-squared consistent for a time series: When used as a predictor, the estimator asymptotically matches the mean-squared error produced b...
متن کاملA Simple Nonparametric Long-Run Correlation Estimator
A simple consistent nonparametric estimator of the long-run correlation between two series is proposed, based on the estimation of the bivariate k-lag difference correlation. It is shown that the estimator is asymptotically equivalent to the Bartlett kernel spectral estimator of the complex coherency at frequency zero. The asymptotic distribution is derived, with a test for the absence of long-...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملA comparison of risk-premium forecasts implied by parametric versus nonparametric conditional mean estimators*
This paper computes parametric estimates of a time-varying risk premium model and compares the one-step-ahead forecasts implied by that model with those given by a nonparametric kernel estimator of the conditional mean function. The conditioning information used for the nonparametric analysis is that implied by the theoretical model of time-varying risk. Thus, the kernel estimator is used, in c...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کامل