A Non-Linear Subdivision Scheme for Triangle Meshes

نویسندگان

  • Stefan Karbacher
  • Stephan Seeger
  • Gerd Häusler
چکیده

Subdivision schemes are commonly used to obtain dense or smooth data representations from sparse discrete data. E. g., B-splines are smooth curves or surfaces that can be constructed by infinite subdivision of a polyline or polygon mesh of control points. New vertices are computed by linear combinations of the initial control points. We present a new non-linear subdivision scheme for the refinement of triangle meshes that generates smooth surfaces with minimum curvature variations. It is based on a combination of edge splitting operations and interpolation by blending circular arcs. In contrast to most conventional methods the final mesh density may be locally adapted to the structure of the mesh. As an application we demonstrate how this subdivision scheme can be used to reconstruct missing range data of incompletely digitized 3-D objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refining Triangle Meshes by Non-linear Subdivision

Subdivision schemes are commonly used to obtain dense or smooth data representations from sparse discrete data. E. g., B-splines are smooth curves or surfaces that can be constructed by infinite subdivision of a polyline or polygon mesh of control points. New vertices are computed by linear combinations of the initial control points. We present a new non-linear subdivision scheme for the refine...

متن کامل

Subdivision Tree Representation of Arbitrary Triangle Meshes

We investigate a new way to represent arbitrary triangle meshes. We prove that a large class of triangle meshes, called normal triangle meshes, can be represented by a subdivision tree, where each subdivision is one of four elementary subdivision types. We also show how to partition an arbitrary triangle mesh into a small set of normal meshes. The subdivision tree representation can be used to ...

متن کامل

An Approximating-Interpolatory Subdivision scheme

In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces finer and finer meshes with quads and triangles (Fig. 1). Designers often want to model certain regions with quad meshes and others with triangle meshes to get better visual quality ...

متن کامل

A Tool for Subdivision of Quad/Tri Meshes with Sharp Features

Designers often want the added flexibility of having both quads and triangles in their models. It is also well known that triangle meshes generate poor limit surfaces when using a quad scheme, while quadonly meshes behave poorly with triangular schemes. Further, regular subdivision produces smooth surfaces even from sharp-cornered base meshes and sometimes sharpness in the subdivision surface i...

متن کامل

Interpolatory quad/triangle subdivision schemes for surface design

Recently the study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control net consisting of both quads and triangles and produces finer and finer meshes with quads and triangles. The use of the quad/triangle structure for surface design is motivated by the fact that in CAD modelling, the designers often want to model c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000