Complex Control Chart Interpretation
نویسنده
چکیده
Identification of the assignable causes of process variability and the restriction and elimination of their influence are the main goals of statistical process control (SPC). Identification of these causes is associated with so called tests for special causes or runs tests. From the time of the formulation of the first set of such rules (Western Electric rules) several different sets have been created (Nelson rules, Boeing AQS rules, Trietsch rules). This paper deals with the comparison analysis of these sets of rules, their basic statistical properties and the mistakes accompanying their application using SW support. At the end of this paper some recommendations for the correct application of the runs tests are formulated.
منابع مشابه
A new chart-independent method for fast identification of control level of industrial processes using continuous data
A new method is developed for a fast identification of the stability situation of industrial processes. The proposed method includes two factor ratios of the control constants for the upper and lower control limits to process these constants. An indication ratio is then defined as the ratio of the maximum data range value to the difference between the maximum and average values for individual d...
متن کاملProviding comprehensive control chart for monitoring of linear and nonlinear profiles using functional data analysis.
Considering profiles as functional variables, two control charts are proposed for their monitoring in phase II. Due to its conformity with the nature of real-world profiles, applying functional model leads to proposed control charts obtained through functional data analysis techniques with desired features. These include simplicity in calculation and possibility of using them for different prof...
متن کاملA Literature Review on the Fuzzy Control Chart; Classifications & Analysis
Quality control plays an important role in increasing the product quality. Fuzzy control charts are more sensitive than Shewhart control chart. Hence, the correct use of fuzzy control chart leads to producing better-quality products. This area is complex because it involves a large scope of industries, and information is not well organized. In this research, we provide a literature review of th...
متن کاملA Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts
The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...
متن کاملX-Bar and R Control Chart Interpretation Using Neural Computing
This paper formulates Shewhart mean (X-bar) and range (R) control charts for diagnosis and interpretation by artificial neural networks. Neural networks are trained to discriminate between samples from probability distributions considered within control limits and those which have shifted in both location and variance. Neural networks are also trained to recognize samples and predict future poi...
متن کاملAn Assessment of Statistical Process Control-Based Approaches for Charting Student Evaluation Scores
We compare three control charts for monitoring data from student evaluations of teaching (SET) with the goal of improving student satisfaction with teaching performance. The two charts that we propose are a modified p chart and a z-score chart. We show that these charts overcome some of the shortcomings of the more traditional charts for analyzing SET data. A comparison of three charts (an indi...
متن کامل