Effect of MyBP-C Binding to Actin on Contractility in Heart Muscle

نویسندگان

  • Irina Kulikovskaya
  • George McClellan
  • Jeanne Flavigny
  • Lucie Carrier
  • Saul Winegrad
چکیده

In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac myosin binding protein-C restricts intrafilament torsional dynamics of actin in a phosphorylation-dependent manner.

We have determined the effects of myosin binding protein-C (MyBP-C) and its domains on the microsecond rotational dynamics of actin, detected by time-resolved phosphorescence anisotropy (TPA). MyBP-C is a multidomain modulator of striated muscle contraction, interacting with myosin, titin, and possibly actin. Cardiac and slow skeletal MyBP-C are known substrates for protein kinase-A (PKA), and ...

متن کامل

Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we det...

متن کامل

Myosin binding protein C, a potential regulator of cardiac contractility.

The role of myosin binding protein C (MyBP-C) in the formation and function of striated muscle is unclear, even though the demonstration of its presence in the thick filaments of striated muscle was made by Offer et al1 more than 25 years ago.2 Because of the inability of myosin to form normal thick filaments in the absence of MyBP-C and the temporal correlation between the appearance of MyBP-C...

متن کامل

Myosin Binding Protein-C: A Regulator of Actomyosin Interaction in Striated Muscle

Myosin-Binding protein-C (MyBP-C) is a family of accessory proteins of striated muscles that contributes to the assembly and stabilization of thick filaments, and regulates the formation of actomyosin cross-bridges, via direct interactions with both thick myosin and thin actin filaments. Three distinct MyBP-C isoforms have been characterized; cardiac, slow skeletal, and fast skeletal. Numerous ...

متن کامل

Effect of extraction of myosin binding protein C on contractility of rat heart.

Human hearts with reduced or mutant myosin binding protein C (MyBP-C) undergo hypertrophy and dilation, suggesting that reduction or alteration of MyBP-C interferes with normal contraction. Extraction of 60-70% of MyBP-C over 1 h from a mechanically disrupted cardiac myocyte has been shown to increase Ca sensitivity but does not appear to impair development of maximum Ca-activated force (Fmax)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2003