HIGHER-DIMENSIONAL DEDEKIND SUMS AND THEIR BOUNDS ARISING FROM THE DISCRETE DIAGONAL OF THE n-CUBE
نویسندگان
چکیده
We define a combinatorial game in R from which we derive numerous new inequalities between higher-dimensional Dedekind sums. Our approach is motivated by a recent article by Dilcher and Girstmair, who gave a nice probabilistic interpretation for the classical Dedekind sum. Here we introduce a game analogous to Dilcher and Girstmair’s model in higher dimensions.
منابع مشابه
On Reciprocity Formulas for Apostol’s Dedekind Sums and Their Analogues
Using the Euler-MacLaurin summation formula, we give alternative proofs for the reciprocity formulas of Apostol’s Dedekind sums and generalized Hardy-Berndt sums s3,p(b, c) and s4,p(b, c). We also obtain an integral representation for each sum.
متن کاملDedekind sums in geometry , topology , and arithmetic October 11 – 16 , 2009 MEALS
S (in alphabetic order by speaker surname) Speaker: Abdelmejid Bayad (Université d’Evry Val d’Essonne) Title: Some facets of multiple Dedekind-Rademacher sums Abstract: We introduce two kind of multiple Dedekind-Rademacher sums, in terms of Bernoulli and Jacobi modular forms. We prove their reciprocity Laws, we establish the Hecke action on these sums and we obtain new Knopp–Petersson identies....
متن کاملPolyhedral Cones of Magic Cubes and Squares
Using computational algebraic geometry techniques and Hilbert bases of polyhedral cones we derive explicit formulas and generating functions for the number of magic squares and magic cubes. Magic cubes and squares are very popular combinatorial objects (see [2, 15, 17] and their references). A magic square is a square matrix whose entries are nonnegative integers and whose row sums, column sums...
متن کاملSpecial Functions Related to Dedekind Type Dc-sums and Their Applications
In this paper we construct trigonometric functions of the sum Tp(h, k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric representations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized La...
متن کاملElliptic Apostol Sums and Their Reciprocity Laws
We introduce an elliptic analogue of the Apostol sums, which we call elliptic Apostol sums. These sums are defined by means of certain elliptic functions with a complex parameter τ having positive imaginary part. When τ → i∞, these elliptic Apostol sums represent the well-known Apostol generalized Dedekind sums. Also these elliptic Apostol sums are modular forms in the variable τ . We obtain a ...
متن کامل