Random Normal Matrices and Polynomial Curves

نویسنده

  • PETER ELBAU
چکیده

Abstract. We show that in the large matrix limit, the eigenvalues of the normal matrix model for matrices with spectrum inside a compact domain with a special class of potentials homogeneously fill the interior of a polynomial curve uniquely defined by the area of its interior domain and its exterior harmonic moments which are all given as parameters of the potential. Then we consider the orthogonal polynomials corresponding to this matrix model and show that, under certain assumptions, the density of the zeros of the highest relevant orthogonal polynomial in the large matrix limit is (up to some constant factor) given by the discontinuity of the Schwarz function of this polynomial curve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Derivatives of random matrix characteristic polynomials with applications to elliptic curves

The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have n eigenvalues equal to 1, and investigate the first non-zero derivative of the characteristic polynomial at that point. The conn...

متن کامل

The derivative of SO(2N + 1) characteristic polynomials and rank 3 elliptic curves

Here we calculate the value distribution of the first derivative of characteristic polynomials of matrices from SO(2N + 1) at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. The connection between the values of random matrix characteristic polynomials and values of the L-functions of families of elliptic curves implies that this calculation in random mat...

متن کامل

Hyperelliptic curves, L-polynomials and random matrices

We analyze the distribution of unitarized L-polynomials L̄p(T ) (as p varies) obtained from a hyperelliptic curve of genus g ≤ 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sarnak random matrix model) between the distributions of L̄p(T ) and of characteristic polynomials of random matrices in the compact Lie group USp(2g)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008