The Dilation Property of Modulation Spaces and Their Inclusion Relation with Besov Spaces

نویسنده

  • MITSURU SUGIMOTO
چکیده

We consider the dilation property of the modulation spaces M. Let Dλ : f(t) 7→ f(λt) be the dilation operator, and we consider the behavior of the operator norm ‖Dλ‖Mp,q→Mp,q with respect to λ. Our result determines the best order for it, and as an application, we establish the optimality of the inclusion relation between the modulation spaces and Besov space, which was proved by Toft [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace Ideals for Pseudo-differential Operators and Their Commutators with Symbols in Α-modulation Spaces

The fact that symbols in the modulation space M1,1 generate pseudo-differential operators of the trace class was first mentioned by Feichtinger and the proof was given by Gröchenig [12]. In this paper, we show that the same is true if we replace M1,1 by more general α-modulation spaces which include modulation spaces (α = 0) and Besov spaces (α = 1) as special cases. The result with α = 0 corre...

متن کامل

Dilation Properties for Weighted Modulation Spaces

In this paper we give a sharp estimate on the norm of the scaling operator Uλf(x) = f(λx) acting on the weighted modulation spaces M s,t (R). In particular, we recover and extend recent results by Sugimoto and Tomita in the unweighted case [15]. As an application of our results, we estimate the growth in time of solutions of the wave and vibrating plate equations, which is of interest when cons...

متن کامل

On dilation operators in Besov spaces

We consider dilation operators Tk : f → f(2·) in the framework of Besov spaces B p,q(R ) when 0 < p ≤ 1. If s > n ` 1 p − 1 ́ , Tk is a bounded linear operator from B p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n `

متن کامل

Common Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)

In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and  the common property (E.A.) in   modified  intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.

متن کامل

A common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces

In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006