Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus.
نویسندگان
چکیده
Finlets are small non-retractable fins located on the dorsal and ventral margins of the body between the second dorsal and anal fins and the tail of scombrid fishes. The morphology of the finlets, and finlet kinematics during swimming in a flow tank at speeds of 0.8-3. 0 fork lengths s(-1), were examined in the chub mackerel Scomber japonicus. Functionally, S. japonicus has five dorsal and anal triangular finlets (the fifth finlet is a pair of finlets acting in concert). Slips of muscle that insert onto the base of each finlet indicate the potential for active movement. In animals of similar mass, finlet length and area increased posteriorly. Finlet length, height and area show positive allometry in animals from 45 to 279 g body mass. Summed finlet area was approximately 15 % of caudal fin area. During steady swimming, the finlets typically oscillated symmetrically in the horizontal and vertical planes. Finlet excursions in the x, y and z directions ranged from 1 to 5 mm, increased posteriorly and were independent of speed. The timing of the maximum amplitude of oscillation was phased posteriorly; the phase lag of the maximum amplitude of oscillation was independent of speed. During some periods of gliding, a finlet occasionally moved independently of the body and the other finlets, which indicated active control of finlet movement. The angle of attack of the finlets averaged approximately 0 degrees over a tailbeat, indicating no net contribution to thrust production via classical lift-based mechanisms. However, the timing of finlet movement relative to that of the tail suggests that more posterior finlets may direct some flow longitudinally as the tail decelerates and thereby contribute flow to the developing caudal fin vortex.
منابع مشابه
Three-dimensional analysis of finlet kinematics in the chub mackerel (Scomber japonicus).
Finlets, which are small non-retractable fins located on the body margins between the second dorsal and anal fins and the caudal fin of scombrid fishes, have been hypothesized to improve swimming performance. The kinematics of three posterior finlets of the chub mackerel, Scomber japonicus, were examined using three-dimensional measurement techniques to test hypotheses on finlet rigidity and fu...
متن کاملSwimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).
The swimming kinematics of two active pelagic fishes from the family Scombridae were compared to test the hypothesis that the kawakawa tuna (Euthynnus affinis) uses the thunniform mode of locomotion, in which the body is held more rigid and undergoes less lateral movement in comparison with the chub mackerel (Scomber japonicus), which uses the carangiform swimming mode. This study, the first qu...
متن کاملTaxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis
Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic st...
متن کاملDifferential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea.
Population genetic structures of the mackerel (Scomber scombrus) and chub mackerel (Scomber japonicus) were studied in the Mediterranean Sea. Fragments of 272 bp (S. scomber) and 387 bp (S. japonicus) of the 5'-end of the mitochondrial control region were sequenced from spawning individuals collected off the coasts of Greece, Italy, Spain, and Portugal. High levels of mitochondrial control regi...
متن کاملHydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
As members of the derived teleost fish clade Scombridae, mackerel exhibit high-performance aquatic locomotion via oscillation of the homocercal forked caudal fin. We present the first quantitative flow visualization of the wake of a scombrid fish, chub mackerel Scomber japonicus (20-26 cm fork length, FL), swimming steadily in a recirculating flow tank at cruising speeds of 1.2 and 2.2FL s(-1)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 15 شماره
صفحات -
تاریخ انتشار 2000