Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons.
نویسندگان
چکیده
We investigated the role of mitochondria in the regulation of intracellular Ca2+ ([Ca2+]i) and excitability of myenteric neurons in guinea pig ileum, using microelectrodes and fura-2 [Ca2+]i measurements. In AH/Type-II neurons, action potentials evoke ryanodine-sensitive increases in [Ca2+]i that activate Ca2+-dependent K+ channels and slow afterhyperpolarizations (AH) lasting approximately 15 sec. Exposure to the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP; 1 microm) had no significant effect on the membrane potential or resting [Ca2+]i. However, action potentials elicited in the presence of FCCP triggered a sustained (>5 min) increase in [Ca2+]i and a compound hyperpolarization (13.4 +/- 1.5 mV). The respiratory chain blockers antimycin A and rotenone (10 microm) had similar effects that developed more slowly. Depletion of the intracellular Ca2+ stores with thapsigargin (2 microm) or ryanodine (10 microm) greatly attenuated the hyperpolarization caused by FCCP. S/Type-I neurons that do not have AH were hyperpolarized by mitochondrial inhibition independently of action potentials. Blockade of the F0F1 ATPase by oligomycin (10 microm) had variable effects on myenteric neurons. The majority of AH/Type-II neurons were hyperpolarized by oligomycin, most likely by activating ATP-dependent K+ channels. This hyperpolarization was not triggered by action potential firing and not accompanied by an increase in [Ca2+]i. MitoTracker staining revealed a dense mitochondrial network particularly in myenteric AH/Type-II neurons, supporting the importance of mitochondrial Ca2+ buffering in this subset of neurons. The data indicate that mitochondrial uptake of Ca2+ released from the endoplasmic reticulum sets [Ca2+]i and the activity of Ca2+-dependent conductances, thus regulating the excitability of myenteric neurons.
منابع مشابه
Energy imbalance alters Ca2+ handling and excitability of POMC neurons
Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investi...
متن کاملCholinergic Submucosal Neurons Display Increased Excitability Following in Vivo Cholera Toxin Exposure in Mouse Ileum
Cholera-induced hypersecretion causes dehydration and death if untreated. Cholera toxin (CT) partly acts via the enteric nervous system (ENS) and induces long-lasting changes to enteric neuronal excitability following initial exposure, but the specific circuitry involved remains unclear. We examined this by first incubating CT or saline (control) in mouse ileal loops in vivo for 3.5 h and then ...
متن کاملCalcium uptake and protein phosphorylation in myenteric neurons, like the release of vasoactive intestinal polypeptide and acetylcholine, are frequency dependent.
The mechanism of the electrical-to-chemical decoding involved in the preferential release of the transmitters acetylcholine and vasoactive intestinal polypeptide (VIP) by electrical field stimulation at low (5 Hz) and high (50 Hz) frequencies was studied in superfused myenteric neurons. The stimulation-induced uptake of 45Ca2+ accompanying high frequency stimulation was markedly reduced by 10 m...
متن کاملCholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum
Background and Aims: Cholera toxin (CT)-induced hypersecretion requires activation of secretomotor pathways in the enteric nervous system (ENS). AH neurons, which have been identified as a population of intrinsic sensory neurons (ISNs), are a source of excitatory input to the secretomotor pathways. We therefore examined effects of CT in the intestinal lumen on myenteric and submucosal AH neuron...
متن کاملElectrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail
Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 16 شماره
صفحات -
تاریخ انتشار 2002