Implicit Euler numerical simulations of sliding mode systems
نویسندگان
چکیده
In this report it is shown that the implicit Euler time-discretization of some classes of switching systems with sliding modes, yields a very good stabilization of the trajectory and of its derivative on the sliding surface. Therefore the spurious oscillations which are pointed out elsewhere when an explicit method is used, are avoided. Moreover the method (an event-capturing, or time-stepping algorithm) allows for accumulation of events (Zeno phenomena) and for multiple switching surfaces (i.e., a sliding surface of codimension > 2). The details of the implementation are given, and numerical examples illustrate the developments. This method may be an alternative method for chattering suppression, keeping the intrinsic discontinuous nature of the dynamics on the sliding surfaces. Links with discrete-time sliding mode controllers are studied. Key-words: Switching systems, Filippov’s differential inclusions, complementarity problems, backward Euler algorithm, sliding modes, maximal monotone mappings, mixed linear complementarity problem, ZOH discretization. ∗ [email protected] † [email protected] in ria -0 03 74 84 0, v er si on 2 10 A pr 2 00 9 Simulations numriques par la mthode d’Euler implicite des systmes modes glissants Résumé : Dans ce rapport, on montre que la discrtisation en temps de type Euler implicite conduit une trs bonne stabilisation d’une classe de systmes commuts avec des modes glissants, et de leurs drives sur la surface de glissement. Les oscillations artificielles qui sont gnralement mentionnes pour l’implmentation discrte de ce type de systmes sont vites. De plus, la mthode (de type “event-capturing” ou “time–stepping”) permet de traiter des accumulations d’vnements (Phnomne de Zenon) et des surfaces de commutations multiples (i.e. des surfaces de glissement de codimension > 2). Dans ce rapport, les dtails de l’implmentation sont donns et des exemples numriques illustrent ses proprits. Cette mthode peut tre une alternative aux mthodes complexes de suppression des oscillations, en gardant la nature intrinsquement discontinue de la dynamique sur les surfaces de glissement. Le lien avec les commandes modes glissants en temps discret est tudi. Mots-clés : Systmes commuts, Inclusion Diffrentielles de Filippov, Problmes de complmentarit, Mthode d’Euler implicite, modes glissants, oprateurs, maximaux monotones, Problme linaire de complmentarit mixte, Discrtisation Bloqueur d’Ordre Zro (BOZ) in ria -0 03 74 84 0, v er si on 2 10 A pr 2 00 9 Implicit Euler numerical simulations of sliding mode systems 3
منابع مشابه
Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems
In this paper it is shown that the implicit Euler time-discretization of some classes of switching systems with sliding modes, yields a very good stabilization of the trajectory and of its derivative on the sliding surface. Therefore the spurious oscillations which are pointed out elsewhere when an explicit method is used, are avoided. Moreover the method (an event-capturing, or time-stepping a...
متن کاملDesign of A No-chatter Fractional Sliding Mode Control Approach for Stabilization of Non-Integer Chaotic Systems
A nonlinear chattering-free sliding mode control method is designed to stabilize fractional chaotic systems with model uncertainties and external disturbances. The main feature of this controller is rapid convergence to equilibrium point, minimize chattering and resistance against uncertainties. The frequency distributed model is used to prove the stability of the controlled system based on dir...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملOn some generalizations of the implicit Euler method for discontinuous fractional differential equations
We discuss the numerical solution of differential equations of fractional order with discontinuous right–hand side. Problems of this kind arise, for instance, in sliding mode control. After applying a set–valued regularization, the behavior of some generalizations of the implicit Euler method is investigated. We show that the scheme in the family of fractional Adams methods possesses the same c...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کامل