Compact, Intelligent, Digitally Controlled Igbt Gate Drivers for a Pebb-based Ilc Marx Modulator*

نویسنده

  • M. N. Nguyen
چکیده

SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from overvoltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Droop Compensation for Marx Modulators*

Marx modulators operated by solid-state switches (e.g. MOSFET, IGBT) offer an alternative to traditional high voltage (HV) modulators for rf power sources. They have the merits of compact size, high-energy efficiency, high reliability, pulse width control and cost reduction. However, Marx modulators need a complex voltage compensation circuit if they are employed in long pulse applications such...

متن کامل

Towards a Pebb-based Design Approach for a Marx- Topology Ilc Klystron Modulator*

Introduced by the U.S. Navy more than a decade ago, the concept of Power Electronic Building Blocks (PEBBs) has been successfully applied in various applications. It is well accepted within the power electronics arena that this concept offers the potential to achieve increased levels of modularity and compactness. This approach is thus ideally suited for applications where easy serviceability a...

متن کامل

Design of the Second-generation Ilc Marx Modulator*

SLAC National Accelerator Laboratory (SLAC) has initiated a program to design and build a Marx-topology modulator to produce a relatively compact, low-cost, high availability klystron modulator for the International Linear Collider (ILC). Building upon the success of the P1 Marx, the SLAC P2 Marx is a second-generation modulator whose design further emphasizes the qualities of modularity and hi...

متن کامل

Advanced Gate Drive for the Sns High Voltage Converter Modulator*

SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned dr...

متن کامل

The Ilc P2 Marx and Application of the Marx Topology to Future Accelerators*

The SLAC P2 Marx is under development as the linac klystron modulator for the ILC. This modulator builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the SLAC P2 Marx’s (henceforth, “P2 Marx”) target application is the ILC, characteristics of the Marx topology make it equally well-suited for operation at different parameter ranges; for example, incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010