A Preconditioner Selection Heuristic for Efficient Iteration with Decomposition of Arithmetic Expressions for Nonlinear Algebraic Systems

نویسندگان

  • R. B. Kearfott
  • Xiaofa Shi
چکیده

We have recently considered decomposing a system of nonlinear equations by defining new variables corresponding to the intermediate results in the evaluation process. In that previous work, we applied both a derivative-free component solution process and an interval Gauss–Seidel method to the large, sparse system of equations so obtained. An analysis of the component solution process indicates when a linearized Gauss–Seidel step is necessary, and how to make it more effective. In this paper, we will present preliminary results on an improved, efficient hybrid algorithm combining the component solution process with only an occasional Gauss–Seidel step on a single component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE USE OF THE HE'S ITERATION METHOD FOR SOLVING NONLINEAR EQUATIONS USING CADNA LIBRARY

In this paper, we apply the Newton’s and He’s iteration formulas in order to solve the nonlinear algebraic equations. In this case, we use the stochastic arithmetic and the CESTAC method to validate the results. We show that the He’s iteration formula is more reliable than the Newton’s iteration formula by using the CADNA library.

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

Quasi-Newton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media

In this work, preconditioners for the iterative solution by Krylov methods of the linear systems arising at each Newton iteration are studied. The preconditioner is defined by means of a Broyden-type rank-one update of a given initial preconditioner, at each nonlinear iteration, as described in [5] where convergence properties of the scheme are theoretically proved. This acceleration is employe...

متن کامل

Iterative Solution of Nonlinear Equations for Spark Methods Applied to Daes

We consider a broad class of systems of implicit differential-algebraic equations (DAEs) including the equations of mechanical systems with holonomic and nonholonomic constraints. We approximate numerically the solution to these DAEs by applying a class of super partitioned additive Runge-Kutta (SPARK) methods. Several properties of the SPARK coefficients, satisfied by the combination of Lobatt...

متن کامل

An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow

In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015