A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics

نویسندگان

  • J. H. Critchley
  • K. S. Anderson
چکیده

Th e method of recursive coordinate reduction (RCR) off ers solutions to the forward problem of multibody dynamics at a cost in which the number of operations is linear in both the number of generalized coordinates, n, and the number of independent algebraic constraints, m (e.g., O(n + m)). However, the RCR is presently restricted in applicability (albeit broad) and susceptible to formulation singularities. Th is article develops two methods for avoiding formulation singularities as well as a recursive general coupled loop solution that extends the RCR to the complete set of multibody systems. Application of these techniques are further illustrated with a special fi ve-bar linkage. Th e existing RCR coupled with these developments constitute a generalized recursive coordinate reduction method that should be used in place of the traditional “O(n)” constraint technique (truly O(n + nm2 + m3)) for superior O(n + m) computational performance. International Journal for Multiscale Computational Engineering, 1(2&3)181–199 (2003) Document ID# JMC0102-03-181–199(014)  0731-8898/03/$5.00 © 2003 by Begell House, Inc. Address all correspondence to J. H. Critchley; [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A real-time recursive dynamic model for vehicle driving simulators

This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...

متن کامل

Forward Dynamics of Multibody Systems: A Recursive Hamiltonian Approach

The increase in processing power and the theoretical breakthroughs achieved in multibody systems dynamics have improved the usefulness of dynamic simulations to such an extent that the development of a whole range of applications has been triggered. Dynamic simulations are used for the analysis of mechanisms, virtual prototyping, simulators, computer animation, advanced control, etc. and are ga...

متن کامل

Efficient Generalized Speeds in a Recursive Formulation of Flexible Multibody Dynamics

A recursive formulation of the dynamical equations of an articulated multibody system with flexible components is given in terms of efficient motion variables for elastic motion and hinge rotation about revolute, Hooke and spherical joints. We treat motion under external forces, as well as prescribed motion with internal loads calculation, and show computational efficiency of the formulation wi...

متن کامل

A CONTROL APPROACH TO HUMAN-LIKE LOCOMOTION IN BIPED ROBOTS with an Approach for Numerical Simulation of Constrained Mechanical Systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Constrained Multibody Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Unconstrained Multibody Dynamics . ...

متن کامل

Implicit Runge - Kutta Integration of the Equations of Multibody Dynamics in Descriptor Form

Implicit Runge-Kutta integration algorithms based on generalized coordinate partitioning are presented for numerical solution of the differential-algebraic equations of motion of multibody dynamics. Second order integration formulas are derived from well known first order Runge-Kutta integrators, defining independent generalized coordinates and their first time derivative as functions of indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002