An Inexact SQP Method for Equality Constrained Optimization
نویسندگان
چکیده
We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved using iterative linear algebra techniques. We address how to determine when a given inexact step makes sufficient progress toward a solution of the nonlinear program, as measured by an exact penalty function. The method is globalized by a line search. An analysis of the global convergence properties of the algorithm and numerical results are presented.
منابع مشابه
A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization
We develop and analyze a trust-region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where direct...
متن کاملA Matrix-free Trust-region Sqp Method for Equality
We introduce and analyze a trust–region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where dire...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملAnalysis of Inexact Trust-Region SQP Algorithms
In this paper we study the global convergence behavior of a class of composite–step trust–region SQP methods that allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust– region SQP methods are adjusted based on feasi...
متن کاملA Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems
We consider sequential quadratic programming (SQP) methods applied to optimization problems with nonlinear equality constraints and simple bounds. In particular, we propose and analyze a truncated SQP algorithm in which subproblems are solved approximately by an infeasible predictor-corrector interior-point method, followed by setting to zero some variables and some multipliers so that compleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 19 شماره
صفحات -
تاریخ انتشار 2008