Effective Pattern Recognition of Control Charts Using a Dynamically Trained Learning Vector Quantization Network

نویسنده

  • Ruey-Shiang Guh
چکیده

Unnatural control chart patterns (CCPs) are associated with a particular set of assignable causes for process variation. Hence, effectively recognizing CCPs can substantially narrow down the set of possible causes to be examined, and accelerate the diagnostic search. Recently, machine-learning techniques, especially the artificial neural network (ANN), have been widely used as an effective tool for CCP recognition (CCPR) tasks. Most ANN applications in CCPR have been using static supervised ANNs, such as back propagation networks (BPNs) and learning vector quantization (LVQ) networks. The false recognition problem (i.e. the patterns are misclassified) commonly encountered for these ANN-based CCPR models is mainly due to the fact that the static ANNs cannot appropriately deal with dynamic patterns, such as CCPs. In this research, a dynamic training algorithm is designed to provide an LVQ network-based CCPR model the capability to on-line recognize the dynamic CCPs that vary over time. The numerical results using simulation show that the dynamically trained LVQ network-based model proposed in this research performs much better than other ANN-based models reported in literature with respective to recognition accuracy and speed. Although this research considers the specific application of a real-time CCPR model based on an LVQ network, the proposed dynamic training algorithm could be applied to CCPR systems based on other ANN architectures in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fuzzy-soft learning vector quantization for control chart pattern recognition

This paper presents a supervised competitive learning network approach, called a fuzzy-soft learning vector quantization, for control chart pattern recognition. Unnatural patterns in control charts mean that there are some unnatural causes for variations in statistical process control (SPC). Hence, control chart pattern recognition becomes more important in SPC. In order to detect e€ ectively t...

متن کامل

Application of spiking neural networks and the bees algorithm to control chart pattern recognition

Statistical process control (SPC) is a method for improving the quality o f products. Control charting plays a most important role in SPC. SPC control charts arc used for monitoring and detecting unnatural process behaviour. Unnatural patterns in control charts indicate unnatural causes for variations. Control chart pattern recognition is therefore important in SPC. Past research shows that alt...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Morphometric shape analysis using learning vector quantization neural networks — an example distinguishing two microtine vole species

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish...

متن کامل

Multiple competitive learning network fusion for object classification

This paper introduces a multiple competitive learning neural network fusion method for pattern recognition. By defining a confidence level measure for the learning vector quantization network classifier, we develop both a serial and a parallel network fusion algorithm to combine the discriminatory ability of different individually trained networks. We use two distinct feature vectors, gray-scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006