The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite
نویسندگان
چکیده
For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three-dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi-uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation.
منابع مشابه
Rainfall Contributions from Precipitation Systems with Different Sizes, Convective Intensities, and Durations over the Tropics and Subtropics
The rainfall contributions from precipitation features (PFs) with full spectra of different sizes and convective intensities over the tropics and subtropics are summarized using 12 yr of version 6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) observations. Regional, seasonal, and diurnal variations of the rainfall contributions from various PFs a...
متن کاملA statistical analysis of the influence of deep convection on water vapor variability in the tropical upper troposphere
The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong ...
متن کامل17 Surface Rain Rates from Tropical Rainfall Measuring Mission Satellite Algorithms
The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA, previously known as National Space Development Agency, or NASDA), is the first coordinated international satellite mission to monitor and study tropical and subtropical rain systems (Simpson et al., 1988). A detail descriptio...
متن کاملCentennial rainfall variation in semi arid and tropical humid environments in the cardamom hill slopes, southern Western Ghats, India
Studies of rainfall variation generally focus on large areas. For example, in India, the area average monsoon rainfall series of the whole country or meteorological subdivisions are used. This would be of no use for local agriculture, particularly in places where rainfall is very high or very low, especially for crops like small cardamom and vanilla which are very sensitive to soil moisture and...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کامل