Joint dynamic probabilistic constraints with projected linear decision rules
نویسندگان
چکیده
We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite-dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.
منابع مشابه
Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملSolving Graded/Probabilistic Modal Logic via Linear Inequalities (System Description)
We present the experience gained from implementing a new decision procedure for both graded and probabilistic modal logic. While our approach uses standard tableaux for propositional connectives, modal rules are given by linear constraints on the arguments of operators. The implementation uses binary decision diagrams for propositional connectives and a linear programming library for the modal ...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملMulti-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 32 شماره
صفحات -
تاریخ انتشار 2017