EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion
نویسندگان
چکیده
BACKGROUND Lipofuscin (LF) is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (-)-epigallocatechin gallate (EGCG), the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown. METHODS AND RESULTS We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal)-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks. CONCLUSIONS Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments.
منابع مشابه
Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation
Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer - dimer are mostly unknown. Herein, we performed extens...
متن کاملExploring the Influence of EGCG on the β-Sheet-Rich Oligomers of Human Islet Amyloid Polypeptide (hIAPP1–37) and Identifying Its Possible Binding Sites from Molecular Dynamics Simulation
EGCG possesses the ability of disaggregating the existing amyloid fibrils which were associated with many age-related degenerative diseases. However, the molecular mechanism of EGCG to disaggregate these fibrils is poorly known. In this work, to study the influence of EGCG on the full-length human islet amyloid polypeptide 1-37 (hIAPP1-37) oligomers, molecular dynamics simulations of hIAPP1-37 ...
متن کاملRole of polysaccharide and lipid in lipopolysaccharide induced prion protein conversion
Conversion of native cellular prion protein (PrPc) from an α-helical structure to a toxic and infectious β-sheet structure (PrPSc) is a critical step in the development of prion disease. There are some indications that the formation of PrPSc is preceded by a β-sheet rich PrP (PrPβ) form which is non-infectious, but is an intermediate in the formation of infectious PrPSc. Furthermore the presenc...
متن کاملProtein aggregates and proteostasis in aging: Amylin and β-cell function
The ubiquitin-proteasomal-system (UPS) and the autophagy-lysosomal-system (ALS) are both highly susceptible for disturbances leading to the accumulation of cellular damage. A decline of protein degradation during aging results in the formation of oxidatively damaged and aggregated proteins finally resulting in failure of cellular functionality. Besides protein aggregation in response to oxidati...
متن کاملShaking Alone Induces De Novo Conversion of Recombinant Prion Proteins to β-Sheet Rich Oligomers and Fibrils
The formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP) is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl), high temperature, phospholipids, or mildly acidic conditions (pH 4). Many of these methods also...
متن کامل