Feature Level Fusion of Iris and Fingerprint Biometrics for personal identification using Artificial Neural Network

نویسندگان

  • Prabhjot Kaur Saini
  • Rakesh Chandra Gangwar
  • Inderjit Singh
چکیده

This research presents the multi –modal biometric system for iris and fingerprint This paper presents the Feature level fusion using wavelet for combining two unimodal biometric system. Gabor transform is used for feature extraction and wavelet transformation for fusion of iris and fingerprint. The system applied artificial neural network technique for recognizing whether the user is genuine (accepted) or impostor (rejected). The proposed system is for multimodal database comprising of 20 samples. The performance of the system is tested on a database prepared to find accuracy, false acceptance rate and false rejection rate. Keywords— Biometric, Unimodal, Multimodal, Security, Spoofing Attack, Wavelet, Gabor,False Rejection Rate,Falese Acceptance Rate . __________________________________________________*****_________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Cascade Classifier based Multimodal Biometric Recognition and Identification System

Biometrics consists of techniques for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits such as Iris, fingerprint, Face and Palm geometry etc. To overcome the limitations of Unimodal biometric system, a multimodal biometric is proposed. Amongst the various fusion levels, feature level fusion is expected to offer better recognition. Feature level fusion f...

متن کامل

Design of Multimodal Biometrics Authentication using Feature Extraction and Fusion

Multimodal biometric can overcome the limitation possessed by single biometric trait and give better classification accuracy. The present work proposes an authentication system with the fingerprint, face and iris multimodal biometric system based on fusion at the feature level. The performances of fingerprint, face and iris recognition can be enhanced using a proposed feature selection method t...

متن کامل

Static Signature Verification and Recognition using Neural Network Approach-A Survey

A number of biometric techniques have been used for personal identification such as face recognition, fingerprint recognition, voice recognition and signature recognition. However signature verification is most widely used. Signature being the most prominent handwritten proof of identity is used for authentication of documents in the fields of financial, commercial and legal transactions which ...

متن کامل

Rank Level Fusion Using Fingerprint and Iris Biometrics

Authentication of users is an essential and difficult to achieve in all systems. Shared secrets like Personal Identification Numbers (PIN) or Passwords and key devices such as Smart cards are not presently sufficient in few situations. The biometric improves the capability to recognize the persons. A biometric identification system is an automatic recognition system that recognizes a person bas...

متن کامل

Iris Recognition using Color Models with Artificial Neural Network

Biometrics plays a vital role for an extensive array of highly secure identification and personal verification systems. Iris Recognition is the recognition of an individual based on iris features. It is regarded as the most promising biometric identification system available. In this paper, the iris recognition is applied on UBIRIS database. Image is segmented using circular Hough transform, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015