True Single Phase Clocking Based Flip-flop Design Using Different Foundries

نویسندگان

  • Priyanka Sharma
  • Rajesh Mehra
چکیده

This paper enumerates a low power, high speed design of flip-flop having less number of transistors. In flip-flop design only one transistor is being clocked by short pulse train which is known as True Single Phase Clocking (TSPC) flip-flop. The true single-phase clock (TSPC) is common dynamic flip-flop which performs the flip-flop operation with little power and at high speeds. In this paper, an extensive comparison of existing designs of positive edge triggered True Single Phase Clocking Flip-flop is carried out. As True Single Phase Clocking (TSPC) flip-flop design has small area and low power consumption. And it can be used in various applications like digital VLSI clocking system, microprocessors, buffers etc. The analysis for various flip-flops for power dissipation and propagation delay has been carried out at different foundries. The designed flip-flops are compared in terms of power consumption and propagation delay and power delay product using DSCH and MICROWIND tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an Ultra Low Power Clock Gating D Flip-Flop Using Quasi-Static Energy Recovery Logic

This paper presents low power clock gating adiabatic D flip-flop using single phase sinusoidal power clock scheme. We propose the clock gated single phase Quasi-Static Energy Recovery Logic (QSERL) D flip-flop at 90nm CMOS technology. In the previously proposed QSERL logic, two phase sinusoidal power clocks were used that increased the hardware complexity and clocking issues. In this paper, sin...

متن کامل

Power & Delay Analysis of D Flip Flop using MTCMOS Technique

This paper enumerates low power, high speed design of TSPC (True Single Phase Clocking) D flip-flop having less number of transistors. This technique allows circuit to achieve lowest power consumption with minimum transistor count. Design of low power device is now an essential field of research due to increase in demand of portable devices. In the circuit as the scaling increase the leakage po...

متن کامل

Design and Analysis of Register Element for Low Power Clocking System

The register element (flip-flop) is a basic building block to design any clocking system, which consists of the clock distribution tree and flip-flops. A large portion of the on chip power is consumed by the clocking system the total power consumption of the clocking system depends on both clocking distribution tree and also the register elements (flip-flops). The power consumption of register ...

متن کامل

A new low power high reliability flip-flop robust against process variations

Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...

متن کامل

A Noble Design of Energy Recovery Flip-Flops

The power consumption of the clock tree dominates over 40% of the total power in high performance VLSI designs. Hence, low power clocking schemes are promising approaches for low power design. We propose energy recovery clocked flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. These flip-flops operate with a single-phase sinusoidal clock whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014