On the Group Velocity of Symmetric and Upwind Numerical Schemes
نویسنده
چکیده
Dissipative numerical approximations to the linear advection equation are considered with respect to their behaviour in the limit of weak dissipation. The context is wave propagation under typical far-field conditions where grids are highly stretched and waves are underresolved. Three classes of schemes are analysed: explicit two-level (i) symmetric and (ii) upwind schemes of optimal accuracy are considered as well as (iii) (symmetric) Runge-Kutta schemes. In the far-field the dissipation of all schemes diminishes. Group speeds of high-frequency modes assume the incorrect sign and may admit 'backward' wave propagation if waves are not damped. A fundamental difference arises between the symmetric and upwind cases owing to the different rates at which the dissipation diminishes. In the upwind case, while the amount of damping per time step diminishes, the accumulative damping remains exponential in time. In the symmetric case the accumulative damping tends to unity, yielding in practice non-dissipative schemes. In this light, parasitic modes constitute much less of a problem in the upwind case than in the symmetric case. Numerical tests confirm these findings.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA Second-Order Combined Compact Upwind Difference Scheme for the Navier-Stokes Equations
Based on the developed thirdand fourth-order upwind compact finite difference(FD) schemes, a new high-order weighted upwind FD approach, which is called combined compact upwind FD method, is proposed for decreasing dispersive(phase) and dissipative errors of the finite difference approximations. The newly proposed combined compact upwind FD schemes have the characters of group velocity control ...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملNumerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کامل