Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.
نویسندگان
چکیده
A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.
منابع مشابه
Extreme diving of beaked whales.
Sound-and-orientation recording tags (DTAGs) were used to study 10 beaked whales of two poorly known species, Ziphius cavirostris (Zc) and Mesoplodon densirostris (Md). Acoustic behaviour in the deep foraging dives performed by both species (Zc: 28 dives by seven individuals; Md: 16 dives by three individuals) shows that they hunt by echolocation in deep water between 222 and 1885 m, attempting...
متن کاملGait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.
Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; a...
متن کاملPassive acoustic monitoring of beaked whale densities in the Gulf of Mexico
Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon e...
متن کاملMolecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae).
To assist in the species-level identification of stranded and hunted beaked whales, we compiled a database of 'reference' sequences from the mitochondrial DNA control region for 15 of the 20 described ziphiid species. Reference samples for eight species were obtained from stranded animals in New Zealand and South Australia. Sequences for a further seven species were obtained from a previously p...
متن کاملSite Fidelity, Associations, and Movements of Cuvier’s (ziphius Cavirostris) and Blainville’s (mesoplodon Densirostris) Beaked Whales off the Island of Hawai‘i
Although the Ziphiidae are the second-most speciose family of cetaceans, information on beaked whale species and populations has been limited by the difficulties in finding and approaching free-ranging individuals. Site fidelity, patterns of association, and movements of two species, Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales, were assessed using a 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory physiology & neurobiology
دوره 167 3 شماره
صفحات -
تاریخ انتشار 2009