Fast Fourier single-pixel imaging using binary illumination
نویسندگان
چکیده
Fourier single-pixel imaging (FSI) has proven capable of reconstructing highquality two-dimensional and three-dimensional images. The utilization of the sparsity of natural images in Fourier domain allows high-resolution images to be reconstructed from far fewer measurements than effective image pixels. However, applying original FSI in digital micro-mirror device (DMD) based high-speed imaging system turns out to be challenging, because the original FSI uses grayscale Fourier basis patterns for illumination while DMDs generate grayscale patterns at a relatively low rate. DMDs are a binary device which can only generate a black-and-white pattern at each instance. In this paper, we adopt binary Fourier patterns for illumination to achieve DMD-based high-speed single-pixel imaging. Binary Fourier patterns are generated by upsampling and then applying error diffusion based dithering to the grayscale patterns. Experiments demonstrate the proposed technique able to achieve static imaging with high quality and dynamic imaging in real time. The proposed technique potentially allows high-quality and high-speed imaging over broad wavebands. OCIS codes: (110.1758) Computational imaging; (110.5200) Photography; (110.3010) Image reconstruction techniques. References and links 1. T. B. Pittman, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995). 2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “'Two-Photon' coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). 3. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008). 4. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008). 5. C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nature photonics 8, 605609 (2014). 6. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational imaging with single-pixel detectors,” Science 340, 844-847 (2013). 7. G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Optics Express 21, 23822-23837 (2013). 8. Y. Zhang, M. Edgar, B. Sun, N. Radwell, G. Gibson, and M. Padgett, “3D single-pixel video,” Journal of Optics 18, 035203 (2016). 9. W. Gong, C. Zhao, H. Yu H, M. Chen, W. Xu, and S. Han. “Three-dimensional ghost imaging lidar via sparsity constraint,” Scientific reports 6, 26133 (2016). 10. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics Letters 41(11), 2497-2500 (2016). 11. M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Communications 7, 12010 (2016). 12. M. Edgar, G. Gibson, R. Bowman, B. Sun, N. Radwell, K. Mitchell, S. Welsh, and M. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Scientific Reports 5, 10669 (2015). 13. L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Scientific Reports 6, 24752 (2016). 14. K. Guo, S. Jiang S, and G. Zheng, “Multilayer fluorescence imaging on a single-pixel detector,” Biomedical Optics Express 7(7), 2425-2431 (2016). 15. A. D. Rodríguez, P. Clemente, E. Tajahuerce, and J. Lancis, “Dual-mode optical microscope based on singlepixel imaging,” Optics and Lasers in Engineering 82, 87-94 (2016). 16. J. J. Field, D. G. Winters, and R. A. Bartels, “Single-pixel fluorescent imaging with temporally labeled illumination patterns,” Optica 3(9), 971-974 (2016). 17. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Optics Express 22(14), 16945-16955 (2014). 18. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015). 19. J. Ma, “Single-pixel remote sensing,” IEEE Geoscience and Remote Sensing Letters 6(2), 199-203 (2009). 20. J. Ma, “A single-pixel imaging system for remote sensing by two-step iterative curvelet thresholding,” IEEE Geoscience and Remote Sensing Letters 6(4), 676-680 (2009). 21. S. Welsh, M. Edgar, R. Bowman, B. Sun, and M. Padgett, “Near video-rate linear Stokes imaging with singlepixel detectors,” Journal of Optics 17, 025705 (2015). 22. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83 (2008). 23. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Optics Express 24(10), 10476-10485 (2016). 24. A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk , “Video compressive sensing for spatial multiplexing cameras using motion-flow models.” SIAM Journal on Imaging Sciences 8(3), 1489-1518 (2015). 25. Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Applied Optics 27, 6631-6636 (2012). 26. R. Floyd and L. Steinberg, “An adaptive algorithm for spatial grey scale,” Proc. Soc. Inf. Display 17, 75-77 (1976). 27. P.S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Applied optics 45(21), 5086-5091 (2006). 28. K. Creath, “Phase-measurement interferometry techniques,” Progress in optics 26, 349-393(1988). 29. Liheng Bian, Jinli Suo, Guohai Situ, Guoan Zheng, Feng Chen, and Qionghai Dai, “Content adaptive illumination for Fourier ptychography,” Optics Letters 39(23), 6648–6651 (2014). 30. Liheng Bian, Jinli Suo, Xuemei Hu, Feng Chen, and Qionghai Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
منابع مشابه
Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging
Minimal mutual coherence of discrete noiselets and Haar wavelets makes this pair of bases an essential choice for the measurement and compression matrices in compressed-sensing-based single-pixel detectors. In this paper, we propose an efficient way of using complex-valued and nonbinary noiselet functions for object sampling in single-pixel cameras with binary spatial light modulators and incoh...
متن کاملOrientation Correlation
A new method of translational image registration is presented: orientation correlation. The method is fast, exhaustive, statistically robust, and illumination invariant. No existing method has all of these properties. A modification that is particularly well suited to matching images of differing modalities, squared orientation correlation, is also given. Orientation correlation works by correl...
متن کاملEnumeration of illumination and scanning modes from real-time spatial light modulators.
Using a phase-only spatial light modulator (SLM) in a Fourier transform setup together with fast diffractive optics design algorithms provides a way to automatically generate complex and rapidly changing laser illumination patterns in the far-field. We propose a hierarchical software structure for the adaptive, on-line design of far-field illumination patterns. Using the on-line design system t...
متن کاملFast Algorithms for Computing Binary Correlation
Cross-correlation is widely used to match images. Cross-correlation of windows where pixels have binary values is necessary when thresholded sign-of-laplacian images are matched. Nishihara proposed that the sign of the laplacian of an image be used as a characteristic, that is robust to illumination changes and noise, to match images. Thresholding the sign of the laplacian of an image results i...
متن کاملComparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm
Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.02880 شماره
صفحات -
تاریخ انتشار 2016