4D VMAT planning and verification technique for dynamic tracking using a direct aperture deformation (DAD) method
نویسندگان
چکیده
We developed a four-dimensional volumetric modulated arc therapy (4D VMAT) planning technique for moving targets using a direct aperture deformation (DAD) method and investigated its feasibility for clinical use. A 3D VMAT plan was generated on a reference phase of a 4D CT dataset. The plan was composed of a set of control points including the beam angle, MLC apertures and weights. To generate the 4D VMAT plan, these control points were assigned to the closest respiratory phases using the temporal information of the gantry angle and respiratory curve. Then, a DAD algorithm was used to deform the beam apertures at each control point to the corresponding phase to compensate for the tumor motion and shape changes. Plans for a phantom and five lung cases were included in this study to evaluate the proposed technique. Dosimetric comparisons were performed between 4D and 3D VMAT plans. Plan verification was implemented by delivering the 4D VMAT plans on a moving QUASAR™ phantom driven with patient-specific respiratory curves. The phantom study showed that the 4D VMAT plan generated with the DAD method was comparable to the ideal 3D VMAT plan. DVH comparisons indicated that the planning target volume (PTV) coverages and minimum doses were nearly invariant, and no significant difference in lung dosimetry was observed. Patient studies revealed that the GTV coverage was nearly the same; although the PTV coverage dropped from 98.8% to 94.7%, and the mean dose decreased from 64.3 to 63.8 Gy on average. For the verification measurements, the average gamma index pass rate was 98.6% and 96.5% for phantom 3D and 4D VMAT plans with 3%/3 mm criteria. For patient plans, the average gamma pass rate was 96.5% (range 94.5-98.5%) and 95.2% (range 94.1-96.1%) for 3D and 4D VMAT plans. The proposed 4D VMAT planning technique using the DAD method is feasible to incorporate the intra-fraction organ motion and shape change into a 4D VMAT planning. It has great potential to provide high plan quality and delivery efficiency for moving targets.
منابع مشابه
Dosimetric evaluation of four‐dimensional dose distributions of CyberKnife and volumetric‐modulated arc radiotherapy in stereotactic body lung radiotherapy
Advanced image-guided stereotatic body lung radiotherapy techniques using volumetric-modulated arc radiotherapy (VMAT) with four-dimensional cone-beam computed tomography (4D CBCT) and CyberKnife with real-time target tracking have been clinically implemented by different authors. However, dosimetric comparisons between these techniques are lacking. In this study, 4D CT scans of 14 patients wer...
متن کاملA deliverable four-dimensional intensity-modulated radiation therapy-planning method for dynamic multileaf collimator tumor tracking delivery.
PURPOSE To develop a deliverable four-dimensional (4D) intensity-modulated radiation therapy (IMRT) planning method for dynamic multileaf collimator (MLC) tumor tracking delivery. METHODS AND MATERIALS The deliverable 4D IMRT planning method involves aligning MLC leaf motion parallel to the major axis of target motion and translating MLC leaf positions by the difference in the target centroid...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کامل4D registration and 4D verification of lung tumor position for stereotactic volumetric modulated arc therapy using respiratory-correlated cone-beam CT
We propose a clinical workflow of stereotactic volumetric modulated arc therapy (VMAT) for a lung tumor from planning to tumor position verification using 4D planning computed tomography (CT) and 4D cone-beam CT (CBCT). A 4D CT scanner, an Anzai belt and a BodyFix were employed to obtain 10-phase respiratory-correlated CT data for a lung patient under constrained breathing conditions. A plannin...
متن کامل4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to as...
متن کامل