Limiting behavior of global attractors for singularly perturbed beam equations with strong damping
نویسندگان
چکیده
The limiting behavior of global attractors Aε for singularly perturbed beam equations ε ∂u ∂t2 + εδ ∂u ∂t + A ∂u ∂t + αAu+ g(‖u‖ 1/4)A u = 0 is investigated. It is shown that for any neighborhood U of A0 the set Aε is included in U for ε small.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملHomotopy analysis method and its application for singularly perturbed delay differential equations with layer behavior
در این مقاله یک روش تحلیلی بر پایهی روش تحلیل هموتوپی برای حل معادله دیفرانسیل-تفاضلی اختشاشی منفرد ارائه شده است. معادلات مورد بررسی در این مقاله از نوع تاخیری است که دارای رفتار لایه مرزی نیز هستند. تفاوت روش تحلیل هموتوپی با روشهای تحلیلی دیگر فراهم کردن یک راه ساده برای کنترل ناحیه همگرایی سری جواب بدست آمده معادله با استفاده از پارامتر کمکی تعبیه شده در این روش است. در این مقاله صحت و درس...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملGlobal Attractors for Nonlinear Beam Equations
This paper is concerned with the dynamics for nonlinear one-dimensional beam equations. We consider a nonlinear beam equation with viscosity or with a lower order damping term instead of the viscosity, and we establish the existence of global attractors for both systems. Keyword: beam equations; global attractor; in nite-dimensional dynamics MSC 2000: 35G25; 35B41
متن کامل