Deconstructing Events: The Neural Bases for Space, Time, and Causality
نویسندگان
چکیده
Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events requires one to represent the spatial relations among objects, the relative durations of actions or movements, and the links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a 1-back task with three conditions of interest (space, time, and causality). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The time contrast, however, produced no significant effects. This pattern, indicating negative results for time trials but positive effects for causality trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space.
منابع مشابه
Space, Time and Causality: Some Neural Observations
Knowledge of events involves understanding the way that objects occupy space, exist in time, and relate to each other. I will consider behavioral, fMRI and lesion studies that explore how space, time and causality are structured and interact in our brains. Tentatively, I propose the following. 1) The perception and conception of space has a parallel organizational structure. Evidence for this c...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملThe Identity of Moses in Surah Al-Qasas with Reference to Time and Space
The question of identity in a narrative text is one of the most influential questions that need further study. The variations in the factors that may affect the concept of identity add to the complexity of the narrative text. The study aims at analyzing the main phases, stages, themes and events of Moses’ life story as part of the narrative discourse. The effects of time and place on the main e...
متن کاملSpace, time, and causality in the human brain
The ability to perceive causality is a central human ability constructed from elemental spatial and temporal information present in the environment. Although the nature of causality has captivated philosophers and scientists since antiquity, the neural correlates of causality remain poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to generate hypothe...
متن کاملBackpropagation through Time Algorithm for Training Recurrent Neural Networks using Variable Length Instances
Artificial Neural Networks (ANNs) are grouped within connectionist techniques of Artificial Intelligence. In particular, Recurrent Neural Networks are a type of ANN which is widely used in signal reproduction tasks and sequence analysis, where causal relationships in time and space take place. On the other hand, in many problems of science and engineering, signals or sequences under analysis do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cognitive neuroscience
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2012