Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience
نویسندگان
چکیده
Afterhyperpolarization (AHP) is a principal feedback mechanism in the control of the frequency and patterning of neuronal firing. In principal projection neurons of the olfactory bulb, the mitral cells (MCs), the AHP is produced by three separate components: classical potassium-mediated hyperpolarization, and the excitatory and inhibitory components, which are generated by the recurrent dendrodendritic synaptic transmission. Precise spike timing is involved in olfactory coding and learning, as well as in the appearance of population oscillatory activity. However, the contribution of the AHP and its components to these processes remains unknown. In this study, we demonstrate that the AHP is developed with the MC firing frequency and is dominated by the potassium component. We also show that recurrent synaptic transmission significantly modifies MC AHP and that the strength of the hyperpolarization produced by the AHP in the few milliseconds preceding the action potential (AP) emission determines MC firing frequency and AP timing. Moreover, we show that the AHP area is larger in younger animals, possibly owing to increased Ca(2+) influx during MC firing. Finally, we show that olfactory experience selectively reduces the early component of the MC AHP (under 25 msec), thus producing a modification of the AP timing limited to the higher firing frequency. On the basis of these results, we propose that the AHP, and its susceptibility to be selectively modulated by the recurrent synaptic transmission and olfactory experience, participate in odor coding and learning by modifying the frequency and pattern of MC firing.
منابع مشابه
P11: Assess the Electrophysiological Activity of Olfactory Bulb in the Animal Model of PTSD and its Relationship with Neuroinflammation in the Olfactory Bulb
Post-traumatic stress disorder (PTSD) is a mental health condition that's triggered by a terrifying event - either experiencing it or witnessing it. In addition to the relationship between PTSD and neuroinflammation, research indicates that olfactory bulb are effective in anxiety disorders. The aim of this study was to assess the electrophysiological activity of olfactory bulb in the animal mod...
متن کاملThe Effects of Soy Milk on Histomorphometric Changes of Olfactory Bulb in Neonatal Ovariectomized RatsSprague- Dawley strain
Background & Objective: Soy milk contains isoflavones that comprises the phytoestrogens families. They have structural similarities with mammalian estrogen. This study was done to investigate the effects of soy milk on histomorphometric changes of olfactory bulb in neonatal ovariectomized rats. Materials & Methods: Thirty female rats Sprague- Dawley strain (one-day old) were kept in a standa...
متن کاملFunctional role of NMDA autoreceptors in olfactory mitral cells.
The output of the olfactory bulb is governed by the interaction of synaptic potentials with the intrinsic conductances of mitral cells. While mitral cells often are considered as simple relay neurons, conveying activity in olfactory receptor cells to the piriform cortex, there is strong physiological and behavioral evidence that local synaptic interactions within the olfactory bulb modulate mit...
متن کاملPhasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
Mitral cells, the principal cells of the olfactory bulb, respond to sensory stimulation with precisely timed patterns of action potentials. By contrast, the same neurons generate intermittent spike clusters with variable timing in response to simple step depolarizations. We made whole cell recordings from mitral cells in rat olfactory bulb slices to examine the mechanisms by which normal sensor...
متن کاملControl of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons.
Rhythmic patterns of neuronal activity have been found at multiple levels of various sensory systems. In the olfactory bulb or the antennal lobe, oscillatory activity exhibits a broad range of frequencies and has been proposed to encode sensory information. However, the neural mechanisms underlying these oscillations are unknown. Bulbar oscillations might be an emergent network property arising...
متن کامل