Incorporation of an ultrasound and model guided permissible region improves quantitative source recovery in bioluminescence tomography

نویسندگان

  • Baptiste Jayet
  • Stephen P. Morgan
  • Hamid Dehghani
چکیده

Bioluminescence imaging has shown great potential for studying and monitoring disease progression in small animal pre-clinical imaging. However, absolute bioluminescence source recovery through tomographic multi-wavelength measurements is often hindered through the lack of quantitative accuracy and suffers from both poor localisation and quantitative recovery. In this work a method to incorporate a permissible region strategy through not only a priori location (permissible region) but also based on a model of light propagation and hence light sensitivity is developed and tested using both simulations and experimental data. Reconstructions on two different numerical models (a simple slab, and the digital version of a heterogeneous mouse) show an improvement of localisation and recovery of intensity (around 25% for the slab model and around 10% for the digital mouse model). This strategy is also used with experimental data from a phantom gel, which demonstrated an improved recovered tomographic image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method

Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes ...

متن کامل

Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation.

As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generall...

متن کامل

Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization pr...

متن کامل

Experimental Study on Bioluminescence Tomography with Multimodality Fusion

To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT), the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruc...

متن کامل

Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region

A reconstruction algorithm for bioluminescence tomography (BLT) has been developed. The algorithm numerically calculates the Green's function at different wavelengths using the diffusion equation and finite element method. The optical properties used in calculating the Green's function are reconstructed using diffuse optical tomography (DOT) and assuming anatomical information is provided by x-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018