Application of Fixed Point Method for Solving Nonlinear Volterra-hammerstein Integral Equation

نویسندگان

  • Khosrow MALEKNEJAD
  • Parvin TORABI
  • Khosrow Maleknejad
  • Parvin Torabi
چکیده

There are various numerical methods to solve nonlinear integral equations. Most of them transform the integral equation into a system of nonlinear algebraic equations. It is cumbersome to solve these systems, or the solution may be unreliable. In this paper, we study the application of the fixed point method to solve Volterra-Hammerstein integral equations. This method does not lead to a nonlinear algebraic equations system. We show how the proper conditions guarantee the uniqueness of the solution and how the fixed point method approximates this solution. A bound for the norm of the error is derived and our results prove the convergence of the method. Finally, we present numerical examples which confirm our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre wavelet method for solving Hammerstein integral equations of the second kind

An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...

متن کامل

A new iteration method for solving a class of Hammerstein type integral equations system

In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

Projection-iteration Method for Solving Nonlinear Integral Equation of Mixed Type

In this paper, the existence of a unique solution of Volterra-Hammerstein integral equation of the second kind (VHIESK) is proved by using Banach fixed point theorem (BFPT) in the space ] , 0 [ ) ( 2 T C L   , where  represents the domain of integration of the variable space and T is the time. Then, different kinds of projectioniteration methods (PIMs) for solving this integral equation in t...

متن کامل

Existence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem

In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012