An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination
نویسندگان
چکیده
Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders.
منابع مشابه
Protamine neutralizes chondroitin sulfate proteoglycan-mediated inhibition of oligodendrocyte differentiation
Chondroitin sulfate proteoglycans (CSPGs), which are enriched in demyelinating plaques in neurodegenerative diseases, such as multiple sclerosis (MS), impair remyelination by inhibiting the migration and differentiation of oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). We herein show that protamine (PRM, also known as a heparin antagonist) effectively neutralizes th...
متن کاملIsolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties
Proteoglycans are expressed in various tissues on cell surfaces and in the extracellular matrix and display substantial heterogeneity of both protein and carbohydrate constituents. The functions of individual proteoglycans of the nervous system are not well characterized, partly because specific reagents which would permit their isolation are missing. We report here that the monoclonal antibody...
متن کاملProteoglycans and injury of the central nervous system.
Proteoglycan is a family of glycoproteins which carry covalently-linked glycosaminoglycan chains, such as chondroitin sulfate and heparan sulfate. Proteoglycans are believed to play important roles in morphogenesis and maintenance of various tissues including the central nervous system (CNS) through interactions with cell adhesion molecules and growth factors. In the CNS, a significant amount o...
متن کاملNeuronal growth cones and regeneration: gridlock within the extracellular matrix
The extracellular matrix is a diverse composition of glycoproteins and proteoglycans found in all cellular systems. The extracellular matrix, abundant in the mammalian central nervous system, is temporally and spatially regulated and is a dynamic "living" entity that is reshaped and redesigned on a continuous basis in response to changing needs. Some modifications are adaptive and some are mala...
متن کاملProteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC.
After injury to the mammalian central nervous system (CNS), neurons are not able to regenerate their axons and recovery is limited by restricted plasticity. Axon regeneration is inhibited by the presence of the various inhibitory molecules, including chondroitin sulfate proteoglycans (CSPGs) which are upregulated around the injury site. Plasticity after the end of critical periods is restricted...
متن کامل