Learning to Combine Motor Primitives Via Greedy Additive Regression

نویسندگان

  • Manu Chhabra
  • Robert A. Jacobs
چکیده

The computational complexities arising in motor control can be ameliorated through the use of a library of motor synergies. We present a new model, referred to as the Greedy Additive Regression (GAR) model, for learning a library of torque sequences, and for learning the coefficients of a linear combination of sequences minimizing a cost function. From the perspective of numerical optimization, the GAR model is interesting because it creates a library of “local features”—each sequence in the library is a solution to a single training task—and learns to combine these sequences using a local optimization procedure, namely, additive regression. We speculate that learners with local representational primitives and local optimization procedures will show good performance on nonlinear tasks. The GAR model is also interesting from the perspective of motor control because it outperforms several competing models. Results using a simulated two-joint arm suggest that the GAR model consistently shows excellent performance in the sense that it rapidly learns to perform novel, complex motor tasks. Moreover, its library is overcomplete and sparse, meaning that only a small fraction of the stored torque sequences are used when learning a new movement. The library is also robust in the sense that, after an initial training period, nearly all novel movements can be learned as additive combinations of sequences in the library, and in the sense that it shows good generalization when an arm’s dynamics are altered between training and test conditions, such as when a payload is added to the arm. Lastly, the GAR model works well regardless of whether motor tasks are specified in joint space or Cartesian space. We conclude that learning techniques using local primitives and optimization procedures are viable and potentially important methods for motor control and possibly other domains, and that these techniques deserve further examination by the artificial intelligence and cognitive science communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Greedy Algorithms for the Sparse Learning Problem

This paper studies the forward greedy strategy in sparse nonparametric regression. For additive models, we propose an algorithm called additive forward regression; for general multivariate models, we propose an algorithm called generalized forward regression. Both algorithms simultaneously conduct estimation and variable selection in nonparametric settings for the high dimensional sparse learni...

متن کامل

Reinforcement learning of motor skills with policy gradients

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from dem...

متن کامل

Convex Regression with Interpretable Sharp Partitions

We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is ...

متن کامل

Applying the Episodic Natural Actor-Critic Architecture to Motor Primitive Learning

In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the “building blocks of movement generation”, called motor ...

متن کامل

Motor Schemas in Robot Learning

Motor schemas used for robot learning are sequences of action that accomplish a goal-directed behavior, or a task. Motor schemas in robot learning are also known as movement primitives, basis behaviors, units of action, and macro actions. Rather than representing the simplest elementary actions available to the robot, such as a simple command to a robot actuator, schemas and motion primitives r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008